Skip to main content
Log in

Mutations in target genes of succinate dehydrogenase inhibitors and demethylation inhibitors in Ramularia collo-cygni in Europe

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Ramularia collo-cygni is a devastating plant pathogen of barley with an increasing importance in Europe and several other barley growing regions worldwide. R. collo-cygni is a pathogen with potential to adapt rapidly to environmental changes and is classified as a “high-risk” phytopathogen with respect to the evolution of fungicide resistance. Quinone-outside inhibitors (QoIs), demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs) represent three major fungicide classes that are frequently used to control a broad range of relevant cereal pathogens. However, in recent years R. collo-cygni has acquired resistance to QoIs; in addition reduced efficacy of SDHI- and DMI-containing products has been observed. In this study, we have investigated the frequency of SDHI- and DMI-adapted isolates in a European population of R. collo-cygni and evaluated the underlying resistance mechanisms towards both fungicide classes. Several mutations in the target genes of SDHIs were detected in the population of R. collo-cygni under investigation (B-H266Y/R, B-T267I, B-I268V, C-N87S, C-H146R, C-H153R and some others) with increasing frequencies since 2014. SDHI resistance in R. collo-cygni is mainly driven by both the presence of mutations and the high frequency of such mutations in the population. Additionally, DMI-adapted isolates of R. collo-cygni were found at a high frequency in the countries under investigation. Fifteen different Cyp51 haplotypes were detected in the set of isolates from 2009 to 2017. The most frequent haplotype in 2017 was C1 haplotype, which comprises three mutations in Cyp51 and shows a substantial increase in EC50 values to DMIs compared with other isolates. As R. collo-cygni has adapted to several groups of fungicides in many regions in Western Europe, future control of this highly diverse and adaptable pathogen must focus on new molecules, choosing resistant varieties and the improvement in seed hygiene standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • EPPO Global Database. EPPO. https://gd.eppo.int. 11 Nov 2018

  • FAOSTAT. https://FAOSTAT.org. 12 Dec 2018

  • Avenot HF, Michailides TJ (2007) Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Dis 91:1345–1350

    CAS  PubMed  Google Scholar 

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–651

    CAS  Google Scholar 

  • Avenot HF, Thomas A, Gitaitis RD, Langston DBJ, Stevenson KL (2012) Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest Manag Sci 68:645–651

    CAS  PubMed  Google Scholar 

  • Becher R, Wirsel SGR (2012) Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 95:825–840

    CAS  PubMed  Google Scholar 

  • Bryson RJ, Brix HD (2018) Challenges and prospects for fungicide control of wheat diseases. In: Dodds B, Oliver R (eds) Integrated disease control in wheat and barley. Science Publication, London, pp 219–234

    Google Scholar 

  • Cavara F (1893) Über einige parasitische Pilze auf dem Getreide. Z Pflanzenkrankheiten 3:16–26

    Google Scholar 

  • Clark WS (2006) Septoria tritici and azole performance. Asp Appl Biol 78:127–132

    Google Scholar 

  • Cools HJ, Fraaije BA (2008) Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola. Pest Manag Sci 64:681–684

    CAS  PubMed  Google Scholar 

  • Cools HJ, Fraaije BA (2013) Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag Sci 69:150–155

    CAS  PubMed  Google Scholar 

  • Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA (2012) Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Manag Sci 68:1034–1040

    CAS  PubMed  Google Scholar 

  • de Waard MA, Andrade AC, Hayashi K, Schoonbeek H, Stergiopoulos I, Zwiers L (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62:195–207

    PubMed  Google Scholar 

  • Délye C, Laigret F, Corio-Costet MF (1997) A mutation in the 14α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl Environ Microbiol 63:2966–2970

    PubMed  PubMed Central  Google Scholar 

  • Dooley H, Shaw MW, Mehenni-Ciz J, Spink J, Kildea S (2016) Detection of Zymoseptoria tritici SDHI insensitive field isolates carrying the SdhC-H152R and SdhD-R47W substitutions. Pest Manag Sci 72:2203–2207

    CAS  PubMed  Google Scholar 

  • Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhäuser J, Rogers PD (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7:1180–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duong S, Raffaele S, Kamoun S (2015) The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35:57–65

    Google Scholar 

  • Fairchild KL, Miles LA, Miles TD, Wharton PS (2012) Detection and characterization of boscalid resistance in Alternaria solani causing early blight on potatoes in Idaho. In: Proceedings on American Phytopathological Society annual meeting. Rhode Island, p 224

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fountaine JM, Fraaije BA (2009) Development of QoI resistant alleles in populations of Ramularia collo-cygni. Asp Appl Biol 92:123–126

    Google Scholar 

  • Fraaije BA, Cools HJ, Kim S, Motteram J, Clark WS, Lucas JA (2007) A novel substitution I381V in the sterol 14α-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Mol Plant Pathol 8:245–254

    CAS  PubMed  Google Scholar 

  • Fraaije BA, Bayon C, Atkins S, Cools HJ, Lucas JA, Fraaije MW (2012) Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Mol Plant Pathol 13:263–275

    CAS  PubMed  Google Scholar 

  • FRAC (2019) SDHI working group. http://www.frac.info/working-group/sdhi-fungicides. Accessed 27 June 2019

  • Grimmer MK, van den Bosch F, Powers SJ, Paveley ND (2015) Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Manag Sci 71:207–215

    CAS  PubMed  Google Scholar 

  • Hägerhäll C (1997) Succinate: quinone oxidoreductases: variations on a conserved theme. BBA Bioenerg 1320:107–141

    Google Scholar 

  • Hamamoto H, Hasegawa K, Nakaune R, Lee YJ, Makizumi Y, Akutsu K, Hibi T (2000) Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol 66:3421–3426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havis ND, Brown JK, Clemente G, Frei P, Jedryczka M, Kaczmarek J, Kaczmarek M, Matusinsky P, McGrann GR, Pereyra S, Piotrowska M, Sghyer H, Tellier A, Hess M (2015) Ramularia collo-cygni—an emerging pathogen of barley crops. Phytopathology 105:895–904

    PubMed  Google Scholar 

  • Hess M, Weigand S, Hausladen H (2009) Studying the epidemics of Ramularia collo-cygni in Germany and Austria with different diagnostic tools; development of field diagnostics and implications for integrated disease control. Asp Appl Biol 92:9–16

    Google Scholar 

  • Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S (2006) Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase). A mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281:7309–7316

    CAS  PubMed  Google Scholar 

  • Huang LS, Sun G, Cobessi D, Wang AC, Shen JT, Tung EY, Anderson VE, Berry EA (2006) 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. J Biol Chem 281:5965–5972

    CAS  PubMed  Google Scholar 

  • Huf A, Rehfus A, Lorenz KH, Bryson R, Voegele RT, Stammler G (2018) Proposal for a new nomenclature for CYP51 haplotypes in Zymoseptoria tritici and analysis of their distribution in Europe. Plant Pathol 67:1706–1712

    CAS  Google Scholar 

  • Ishii H, Miyamoto T, Ushiod S, Kakishimab M (2010) Lack of cross-resistance to a novel succinate dehydrogenase inhibitor, fluopyram, in highly boscalid-resistant isolates of Corynespora cassiicola and Podosphaera xanthii. Pest Manag Sci 67:474–482

    Google Scholar 

  • Joseph-Horne T, Hollomon D, Manning N, Kelly SL (1996) Investigation of the sterol composition and azole resistance in field isolates of Septoria tritici. Appl Environ Microbiol 62:184–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuck K-H, Russell PE (2006) FRAC: combined resistance risk assessment. Asp Appl Biol 78:3–10

    Google Scholar 

  • Landschoot S, Carrette J, Vandecasteele M, Baets BB, Hoefte M, Audenaert K, Haesert G (2017) Boscalid-resistance in Alternaria alternate and Alternaria solani populations: an emerging problem in Europe. Crop Prot 92:49–59

    Google Scholar 

  • Leadbeater A (2014) The impact of the new European Regulations on the management of crop diseases. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds VI. DPG, Braunschweig, pp 1–10

    Google Scholar 

  • Leisova-Svobodova L, Matusinsky P, Kucera L (2012) Variability of the Ramularia collo-cygni population in Central Europe. J Phytopathol 160:701–709

    Google Scholar 

  • Lepesheva GI, Waterman MR (2004) CYP51—the omnipotent P450. Mol Cell Endocrinol 215:165–170

    CAS  PubMed  Google Scholar 

  • Lepesheva GI, Waterman MR (2011) Structural basis for conservation in the CYP51 family. BBA Proteins Proteom 1814:88–93

    CAS  Google Scholar 

  • Leroux P, Walker AS (2011) Multiple mechanisms account for resistance to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 67:44–59

    CAS  PubMed  Google Scholar 

  • Leroux P, Walker AS (2013) Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance. Eur J Plant Pathol 135:683–693

    CAS  Google Scholar 

  • Leroux P, Albertini C, Gautier A, Gredt M, Walker AS (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci 63:688–698

    CAS  PubMed  Google Scholar 

  • Leroux P, Gredt M, Leroch M, Walker AS (2010) Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 76:6615–6630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JA, Hawkins NJ, Fraaije BA (2015) The evolution of fungicide resistance. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 90. Elsevier, Hoboken, pp 29–92

    Google Scholar 

  • Mair W, Lopez-Ruiz F, Stammler G, Clark W, Burnett F, Hollomon D, Ishii H, Thind TS, Brown JK, Fraaije B, Cools H, Shaw M, Fillinger S, Walker AS, Mellado E, Schnabel G, Mehl A, Oliver RP (2016) Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Manag Sci 72:1449–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsson M, Hederstedt L (2001) The carboxin-binding site on Paracoccus denitrificans succinate: quinone reductase identified by mutations. J Bioenerg Biomembr 33:99–105

    CAS  PubMed  Google Scholar 

  • Matusinsky P, Svobodova-Leisova L, Marik P, Tvaruzek L, Stemberkova L, Hanusova M, Minarikova V, Vysohlidova M, Spitzer T (2010) Frequency of a mutant allele of cytochrome b conferring resistance to QoI fungicides in the Czech population of Ramularia collo-cygni. J Plant Dis Prot 117:248–252

    CAS  Google Scholar 

  • Matusinsky P, Hanusova M, Stemberkova L, Marik P, Minarikova V, Tvaruzek L, Langer I, Spitzer T (2013) Response of spring barley cultivars to Ramularia leaf spot in conditions of the Czech Republic. Cereal Res Commun 41:126–132

    Google Scholar 

  • McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A, Chartrain L, Thomas WT, Brown JK (2014) A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot 65:1025–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGrann GRD, Andongabo A, Sjökvist E, Trivedi U, Dussart F, Kaczmarek M, Mackenzie A, Fountaine JM, Taylor JMG, Paterson LJ, Gorniak K, Burnett F, Kanyuka K, Hammond-Kosack KE, Rudd JJ, Blaxter M, Havis ND (2016) The genome of the emerging barley pathogen Ramularia collo-cygni. BMC Genom 17:584

    Google Scholar 

  • Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47:94–106

    PubMed  Google Scholar 

  • Nozawa Y, Morita T (1986) Molecular mechanisms of antifungal agents associated with membrane ergosterol: dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Van den Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elsevier, Amsterdam, pp 111–122

    Google Scholar 

  • Omrane S, Sghyer H, Audéon C, Lanen C, Duplaix C, Walker AS, Fillinger S (2015) Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environ Microbiol 17:2805–2823

    CAS  PubMed  Google Scholar 

  • Oxley SJP, Havis ND (2010) Managing Ramularia collo-cygni through varietal resistance, seed health and forecasting. Project report No. 463, HGCA, Kenilworth, UK

  • Piotrowska MJ, Ennos RA, Fountaine JM, Burnett FJ, Kaczmarek M, Hoebe PN (2016) Development and use of microsatellite markers to study diversity, reproduction and population genetic structure of the cereal pathogen Ramularia collo-cygni. Fungal Genet Biol 87:64–71

    CAS  PubMed  Google Scholar 

  • Piotrowska MJ, Fountaine JM, Ennos RA, Kaczmarek M, Burnett FJ (2017) Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. Pest Manag Sci 73:1187–1196

    CAS  PubMed  Google Scholar 

  • Podust LM, Stojan J, Poulos TL, Waterman MR (2001) Substrate recognition sites in 14alpha-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J Inorg Biochem 87:227–235

    CAS  PubMed  Google Scholar 

  • Rehfus A, Miessner S, Achenbach J, Strobel D, Bryson R, Stammler G (2016) Emergence of succinate dehydrogenase inhibitor resistance of Pyrenophora teres in Europe. Pest Manag Sci 72:1977–1988

    CAS  PubMed  Google Scholar 

  • Rehfus A, Strobel D, Bryson B, Stammler G (2018) Mutations in sdh genes in field isolates of Zymoseptoria tritici and impact on the sensitivity to various succinate dehydrogenase inhibitors. Plant Pathol 67:175–180

    CAS  Google Scholar 

  • Sanglard D, Ischer F, Koymans L, Bille J (1998) Amino acid substitutions in the cytochrome P-450 Lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Ch 42:241–253

    CAS  Google Scholar 

  • Scalliet G, Bowler J, Luksch T, Kirchhofer-Allan L, Steinhauer D, Ward K, Niklaus M, Verras A, Csukai M, Daina A, Fonné-Pfister R (2012) Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the wheat pathogen Mycosphaerella graminicola. PLoS ONE 7:e35429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz HK, Medeiros C, Craig IR, Stammler G (2014) Sensitivity of Phakopsora pachyrhizi towards quinone-outside-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms. Pest Manag Sci 70:378–388

    CAS  PubMed  Google Scholar 

  • Sierotzki H, Scalliet G (2013) A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880–887

    CAS  PubMed  Google Scholar 

  • Sierotzki H, Frey R, Morchoisne M, Olaya G, Mösch M, Scalliet G (2011) Sensitivity of fungal pathogens to SDHI fungicides. In: Dehne HW, Deising HB, Gisi U, Kuck KH, Russell PE, Lyr H (eds) Modern fungicides and antifungal compounds, vol VI. DPG, Braunschweig, pp 179–186

    Google Scholar 

  • Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J (1998) A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet 34:393–398

    CAS  PubMed  Google Scholar 

  • Stam R, Münsterkötter M, Pophaly SD, Fokkens L, Sghyer H, Güldener U, Hückelhoven R, Hess M (2018) A new reference genome shows the one-speed genome structure of the barley pathogen Ramularia collo-cygni. Genome Biol Evol 10:3243–3249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stammler G (2008) Mode of action, biological performance and latest monitoring results of boscalid sensitivity. In: 18th symposium of the research committee on fungicide resistance. The Phytopathological Society of Japan, Shimane, Japan, pp 30–43

  • Stammler G, Carstensen M, Koch A, Semar M, Strobel D, Schlehuber S (2008) Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on the epoxiconazole-sensitivity and -field efficacy. Crop Prot 27:1448–1456

    CAS  Google Scholar 

  • Stammler G, Cordero J, Koch A, Semar M, Schlehuber S (2009) Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Prot 28:891–897

    CAS  Google Scholar 

  • Stammler G, Glättli A, Koch A, Schlehuber S (2010) Mutations in the target protein conferring resistance to SDHI fungicides. In: Dehne HW, Deising HB, Gisi U, Kuck K-H, Russell PE, Lyr H (eds) modern fungicides and antifungal compounds, vol VI. DPG. Braunschweig, Germany, pp 195–198

    Google Scholar 

  • Stammler G, Wolf A, Glättli A, Klappach K (2015) Respiration inhibitors: complex II. In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens. Principles and a guide to practical management. Springer, Tokyo, pp 105–117

    Google Scholar 

  • Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH (2006) The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b. J Biol Chem 281:32310–32317

    CAS  PubMed  Google Scholar 

  • Veloukas T, Leroch M, Hahn M, Karaoglanidis GS (2011) Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Dis 95:1302–1307

    CAS  PubMed  Google Scholar 

  • Walters DR, Havis ND, Oxley SJP (2008) Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Lett 279:1–7

    CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    CAS  PubMed  Google Scholar 

  • Zhan J, Stefanato FL, McDonald BA (2006) Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Mol Plant Pathol 7:259–268

    CAS  PubMed  Google Scholar 

  • Zlof V, Sunley R (2011) Report of the EPPO Workshop on azole fungicides and Septoria leaf blotch control. Harpenden GB EPPO Bull 41:145–148

    Google Scholar 

Download references

Acknowledgements

We would like to thank Birgit Wieja, Angelika Hawlik and Gabriele Berthold for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Stammler.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehfus, A., Matusinsky, P., Strobel, D. et al. Mutations in target genes of succinate dehydrogenase inhibitors and demethylation inhibitors in Ramularia collo-cygni in Europe. J Plant Dis Prot 126, 447–459 (2019). https://doi.org/10.1007/s41348-019-00246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-019-00246-4

Keywords

Navigation