Skip to main content
Log in

UAV-based multispectral imagery for fast Citrus Greening detection

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Considering the variation in spectral response of plants due to unhealthiness effects, this study utilizes multispectral imaging to detect Greening disease of citrus trees. Low altitude multispectral images acquired in five discrete bands of R, G, B, Red Edge, and NIR by an imaging camera embedded on an unmanned aerial vehicle. Image features including 16 vegetation indices and 5 bands from spectral images are extracted. Support vector machine (SVM) used to classify the images using generated features in two steps. First, for determining trees from non-trees objects and then based on the output, healthy and diseased trees are classified. The obtained overall classification results based on check samples are 81.75% for SVM model which demonstrates that low altitude multispectral imagery has the potential to be applied for fast detection of Greening infected trees in citrus orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Green–Red Vegetation Index.

References

  • Abe S (2005) Support vector machines for pattern classification, vol 53. Springer, London

    Google Scholar 

  • Arredondo Valdés R, Delgado Ortiz JC, Beltrán Beache M, Anguiano Cabello J, Cerna Chávez E, Rodríguez Pagaza Y, Ochoa Fuentes YM (2016) A review of techniques for detecting Huanglongbing (greening) in citrus. Can J Microbiol 62(10):803–811

    Article  CAS  PubMed  Google Scholar 

  • Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172

    Article  Google Scholar 

  • Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245

    Article  Google Scholar 

  • Cevallos-Cevallos JM, Futch DB, Shilts T, Folimonova SY, Reyes-De-Corcuera JI (2012) GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol Biochem 53:69–76

    Article  CAS  PubMed  Google Scholar 

  • Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101(2):181–193

    Article  Google Scholar 

  • Clemens SR (2012) Procedures for correcting Digital Camera Imagery Acquired by the AggieAir remote sensing platform

  • Crippen RE (1990) Calculating the vegetation index faster. Remote Sens Environ 34(1):71–73

    Article  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154(1):30–36

    Article  CAS  Google Scholar 

  • De Castro AI, Ehsani R, Ploetz R, Crane JH, Abdulridha J (2015) Optimum spectral and geometric parameters for early detection of laurel wilt disease in avocado. Remote Sens Environ 171:33–44

    Article  Google Scholar 

  • Deng X, Lan Y, Hong T, Chen J (2016) Citrus greening detection using visible spectrum imaging and C-SVC. Comput Electron Agric 130:177–183

    Article  Google Scholar 

  • Faghihi MM, Salehi M, Bagheri A, Izadpanah K (2009) First report of citrus huanglongbing disease on orange in Iran. Plant Pathol 58(4):793

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations [online] (2014) Available from. http://www.fao.org/faostat/en/#data/QC. Accessed 16 Jan 2017

  • Futch STEVE, Weingarten SHAWRON, Irey MIKE (2009) Determining HLB infection levels using multiple survey methods in Florida citrus. Proc Fla State Hort Soc 122:152–157

    Google Scholar 

  • Garcia-Ruiz F, Sankaran S, Maja JM, Lee WS, Rasmussen J, Ehsani R (2013) Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput Electron Agric 91:106–115

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292

    Article  CAS  Google Scholar 

  • Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298

    Article  Google Scholar 

  • Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett 32(8):1–4

    Article  CAS  Google Scholar 

  • Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol Mol Plant Pathol 74:76–83

    Article  CAS  Google Scholar 

  • Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón JJ, Intrigliolo DS, Fereres E (2013) Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agric 14(6):660–678

    Article  Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352

    Article  Google Scholar 

  • Izzuddin MA, Seman Idris A, Nisfariza MN, Nordiana AA, Shafri HZM, Ezzati B (2017) The development of spectral indices for early detection of Ganoderma disease in oil palm seedlings. Int J Remote Sens 38(23):6505–6527

    Article  Google Scholar 

  • Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663–666

    Article  Google Scholar 

  • Katti AR, Lee WS, Ehsani R, Yang C (2015) Band selection using forward feature selection algorithm for citrus Huanglongbing disease detection. J Biosyst Eng 40(4):417–427

    Article  Google Scholar 

  • Keremane ML, Ramadugu C, Rodriguez E, Kubota R, Shibata S, Hall DG, Lee RF (2015) A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot 68:41–48

    Article  Google Scholar 

  • Lee WS, Ehsani R (2015) Sensing systems for precision agriculture in Florida. Comput Electron Agric 112:2–9

    Article  Google Scholar 

  • Li H, Lee WS, Wang K, Ehsani R, Yang C (2014) Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging. Precision Agric 15(2):162–183

    Article  Google Scholar 

  • Micasense Support. https://support.micasense.com/hc/en-us/articles/215206828-How-much-overlap-is-needed. Accessed 20 May 2017

  • Micasense Inc (2017). https://www.micasense.com/rededge/. Accessed 16 Jan 2017

  • Mishra A, Karimi D, Ehsani R, Albrigo LG (2011) Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosyst Eng 110(3):302–309

    Article  Google Scholar 

  • Motohka T, Nasahara KN, Oguma H, Tsuchida S (2010) Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens 2(10):2369–2387

    Article  Google Scholar 

  • Pen Uelas J, Filella I, Lloret P, Mun Oz F, Vilajeliu M (1995) Reflectance assessment of mite effects on apple trees. Int J Remote Sens 16(14):2727–2733

    Article  Google Scholar 

  • Qin J, Burks TF, Ritenour MA, Bonn WG (2009) Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J Food Eng 93(2):183–191

    Article  Google Scholar 

  • Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384

    Article  Google Scholar 

  • Rouse Jr JW, Haas RH, Schell JA, Deering DW (1973) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation

  • Sankaran S, Ehsani R (2011) Visible-near infrared spectroscopy based citrus greening detection: evaluation of spectral feature extraction techniques. Crop Prot 30(11):1508–1513

    Article  Google Scholar 

  • Sankaran S, Maja JM, Buchanon S, Ehsani R (2013) Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 13(2):2117–2130

    Article  PubMed  Google Scholar 

  • Sarkar SK, Das J, Ehsani R, Kumar V (2016) Towards autonomous phytopathology: outcomes and challenges of citrus greening disease detection through close-range remote sensing. In: 2016 IEEE international conference on robotics and automation (ICRA), IEEE, pp 5143–5148

  • Shi J, Wang J, Xu Y (2011) Object-based change detection using georeferenced UAV images. Int Arch Photogramm Remote Sens Spat Inf Sci 38:177–182

    Google Scholar 

  • Shi Y, Huang W, Luo J, Huang L, Zhou X (2017) Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput Electron Agric 141:171–180

    Article  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354

    Article  Google Scholar 

  • Sripada RP, Heiniger RW, White JG, Weisz R (2005) Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy J 97(5):1443–1451

    Article  Google Scholar 

  • Xiang H, Tian L (2011) Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst Eng 108(2):174–190

    Article  Google Scholar 

  • Zarco-Tejada PJ, González-Dugo V, Berni JA (2012) Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh DadrasJavan.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DadrasJavan, F., Samadzadegan, F., Seyed Pourazar, S.H. et al. UAV-based multispectral imagery for fast Citrus Greening detection. J Plant Dis Prot 126, 307–318 (2019). https://doi.org/10.1007/s41348-019-00234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-019-00234-8

Keywords

Navigation