Abstract
A broad range of different Fusarium (F.) species is associated with Fusarium head blight (FHB) on barley and the corresponding negative effects in downstream processing of barley grain in food and feed production. Previous studies highlight the significance of the wheat-relevant and well-studied species F. graminearum as well as less prominent species including F. culmorum, F. avenaceum, F. tricinctum, F. langsethiae, F. sporotrichioides, F. poae, and others. In this context, prevalent climate and cultivation conditions were shown to determine disease severity as well as dominance of certain species within the Fusarium pathogen complex. To gain further insight into possible historic developments of FHB, the annual occurrence of currently relevant Fusarium species was analyzed in Bavarian archive samples of winter (from 1958 to 2010) and spring barley (from 1965 to 2010) using species-specific quantitative polymerase chain reaction. Although DNA contents varied between samples of individual years, data suggest a general increase in Fusarium incidence, particularly in spring barley. Comparing pathogen complexes, we observed not only continuous dominance of F. graminearum in winter barley, but also an increasing relevance of this species in spring barley. The rising Fusarium incidence over time generally coincides with climate change related factors like increasing temperatures. However, it may furthermore be linked to changing cultivation methods and intensified maize production. This study therefore exhibits the dynamic complexity of barley grain contamination with Fusarium spp., which should be taken into account for future disease management.
This is a preview of subscription content, access via your institution.


References
Bateman GL, Gutteridge RJ, Gherbawy Y, Thomsett MA, Nicholson P (2007) Infection of stem bases and grains of winter wheat by Fusarium culmorum and F. graminearum and effects of tillage method and maize-stalk residues. Plant Pathol 56:604–615. https://doi.org/10.1111/j.1365-3059.2007.01577.x
Beccari G, Prodi A, Tini F, Bonciarelli U, Onofri A, Oueslati S, Limayama M, Covarelli L (2017) Changes in the Fusarium head blight complex of malting barley in a three-year field experiment in Italy. Toxins 9:120. https://doi.org/10.3390/toxins9040120
Brown JKM, Rant JC (2013) Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathol 62:83–95. https://doi.org/10.1111/ppa.12163
Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84:71–76. https://doi.org/10.1094/PDIS.2000.84.1.71
Edwards SG (2004) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett 153:29–35. https://doi.org/10.1016/j.toxlet.2004.04.022
Ferrigo D, Raiola A, Causin R (2016) Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21:627. https://doi.org/10.3390/molecules21050627
Geißinger C, Hofer K, Habler K, Heß M, Hückelhoven R, Rychlik M, Becker T, Gastl M (2017) Fusarium species on barley malt—visual assessment as an appropriate tool for detection? Cereal Chem 94:659–669. https://doi.org/10.1094/CCHEM-08-16-0212-R
Gilbert J, Tekauz A (2000) Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Path 22:1–8. https://doi.org/10.1080/07060660009501155
Goertz A, Zuehlke S, Spiteller M, Steiner U, Dehne HW, Waalwijk C, de Vries I, Oerke EC (2010) Fusarium species and mycotoxin profiles on commercial maize hybrids in Germany. Eur J Plant Pathol 128:101–111. https://doi.org/10.1007/s10658-010-9634-9
Habler K, Hofer K, Geißinger C, Schüler J, Hückelhoven R, Hess M, Gastl M, Rychlik M (2016) Fate of Fusarium toxins during the malting process. J Agric Food Chem 64:1377–1384. https://doi.org/10.1021/acs.jafc.5b05998
Habler K, Geissinger C, Hofer K, Schüler J, Moghari S, Hess M, Gastl M, Rychlik M (2017) Fate of Fusarium toxins during brewing. J Agric Food Chem 65:190–198. https://doi.org/10.1021/acs.jafc.6b04182
Hofer K, Linkmeyer A, Textor K, Hückelhoven R, Hess M (2015) MILDEW LOCUS O mutation does not affect resistance to grain infections with Fusarium spp. and Ramularia colly-cygni. Phytopathology 105:1214–1219. https://doi.org/10.1094/PHYTO-12-14-0381-R
Hofer K, Barmeier G, Schmidhalter U, Habler K, Rychlik M, Hückelhoven R, Hess M (2016a) Effect of nitrogen fertilization on Fusarium head blight in spring barley. Crop Prot 88:18–27. https://doi.org/10.1016/j.cropro.2016.05.007
Hofer K, Geißinger C, König C, Gastl M, Hückelhoven R, Hess M, Coleman AD (2016b) Influence of Fusarium isolates on the expression of barley genes related to plant defense and malting quality. J Cereal Sci 69:17–24. https://doi.org/10.1016/j.jcs.2016.02.005
Hückelhoven R, Hofer K, Coleman AD, Heß M (2018) Fusarium infection of malting barley has to be managed over the entire value chain. J Plant Dis Prot 125:1–4. https://doi.org/10.1007/s41348-017-0101-0
Ibanez-Vea M, Ganzales-Penaz E, Lizarraga E, Lopez de Ceran A (2012) Co-occurrence of mycotoxins in Spanish barley: a statistical overview. Food Control 28:295–298. https://doi.org/10.1016/j.foodcont.2012.04.046
Ioos R, Belhadj A, Menez M (2004) Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia 158:351–362. https://doi.org/10.1007/s11046-004-2228-3
Jørgensen JH (1992) Discovery, characterization and exploitation of mlo powdery mildew resistance in barley. Euphytica 63:141–152. https://doi.org/10.1007/BF00023919
Linkmeyer AMH (2012) Fusarium head blight of barley: epidemiology and host-pathogen interaction. Dissertation, Technische Universität München
Linkmeyer A, Hofer K, Rychlik M, Herz M, Hausladen H, Hückelhoven R, Hess M (2016) The influence of inoculum and climatic factors on the severity of Fusarium head blight in German spring and winter barley. Food Addit Contam Part A 33:489–499. https://doi.org/10.1080/19440049.2015.1133932
McGrann GR, Steed A, Burt C, Nicholson P, Brown JK (2015) Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens. J Exp Bot 66(11):3417–3428. https://doi.org/10.1093/jxb/erv154
Medina A, Gonzalez-Jartin JM, Sainz MJ (2017) Impact of global warming on mycotoxins. Curr Opin Food Sci 18:76–81. https://doi.org/10.1016/j.cofs.2017.11.009
Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VMT, Pascale M, Terzi V (2016) Occurrence of Fusarium langsethiae an T-2 and HT-2 Toxins in Italian malting barley. Toxins 8:247. https://doi.org/10.3390/toxins8080247
Morgavi DP, Riley RT (2007) Fusarium and their toxins: mycology, occurrence, toxicity, control and economic impact. Anim Feed Sci Technol 3(1379):199–200. https://doi.org/10.1016/j.anifeedsci.2007.06.001
Müller HM, Reimann J, Schumacher U, Schwadorf K (1997) Natural occurrence of Fusarium toxins in barley harvested during five years in an area of southwest Germany. Mycopathologia 137:185–192. https://doi.org/10.1023/A:1006805717043
Nakajima T, Yoshida M, Tomimura KJ (2008) Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J Gen Plant Pathol 74:289. https://doi.org/10.1007/s10327-008-0103-7
Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson BJ, Swanston JS, Thomas WT (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3(2):141. https://doi.org/10.1007/s12571-011-0126-3
Nicolaisen M, Supronienė S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF (2009) Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods 76(3):234–240. https://doi.org/10.1016/j.mimet.2008.10.016
Nielsen LK, Jensen JD, Nielsen GC, Jensen JE, Spliid NH, Thomsen IK, Justesen AF, Collinge DB, Jørgensen LN (2011) Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960–969. https://doi.org/10.1094/PHYTO-07-10-0188
Nogueira MS, Decundo J, Martinez M, Dieguez SN, Moreyra F, Moreno MV, Stenglein SA (2018) Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins 10(2):78. https://doi.org/10.3390/toxins10020078
Oliveira PM, Mauch A, Jacob F, Waters DM, Arendt EK (2012) Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt. Int J Food Microbiol 156:32–43. https://doi.org/10.1016/j.ijfoodmicro.2012.02.019
Oliveira PM, Waters DM, Arendt EK (2013) The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains. Appl Microbiol Biotechnol 97:2053–2065. https://doi.org/10.1007/s00253-013-4696-1
Opoku N, Back MA, Edwards SG (2017) Susceptibility of cereal species to Fusarium langsethiae under identical field conditions. Eur J Plant Pathol 150(4):869–879. https://doi.org/10.1007/s10658-017-1329-z
Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119:103–108. https://doi.org/10.1016/j.ijfoodmicro.2007.07.032
Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238. https://doi.org/10.1111/j.1365-3059.1995.tb02773.x
Rossi V, Ravanetti A, Pattori E, Giosue S (2001) Influence of temperature and humidity on the infection of wheat spikes by some fungi causing Fusarium head blight. J Plant Pathol 83:189–198. https://www.jstor.org/stable/41998061. Accessed 27 Mar 2019
Sarlin T, Laitila A, Pekkarinen A, Haikara A (2005) Effects of three Fusarium species on the quality of barley and malt. J Am Soc Brew Chem 63:43–49. https://doi.org/10.1094/ASBCJ-63-0043
Schöneberg T, Martin C, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Keller B, Vogelgsang S (2016) Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques. Food Addit Contam Part A 33(10):1608–1619. https://doi.org/10.1080/19440049.2016.1219071
Schwarz PB, Horsley RD, Steffenson BJ, Salas B, Barr JM (2006) Quality risks associated with the utilization of Fusarium head blight infected malting barley. J Am Soc Brew Chem 64:1–7. https://doi.org/10.1094/ASBCJ-64-0001
STMUV (Bayerisches Staatsministerium für Umwelt und Verbraucherschutz) (2015) Klima-report Bayern 2015—Klimawandel, Auswirkungen, Anpassungs- und Forschungsaktivitäten. https://www.bestellen.bayern.de/application/eshop_app000001?SID=1390828093&ACTIONxSESSxSHOWPIC(BILDxKEY:’stmuv_klima_008’,BILDxCLASS:’Artikel’,BILDxTYPE:’PDF’). Accessed 24 Feb 2018
Torp M, Nirenberg HI (2004) Description of Fusarium langsethiae sp. nov. on cereals in Europe. Int J Food Microbiol 95:247–256. https://doi.org/10.1016/j.ijfoodmicro.2003.12.014
Ullrich SE (2011) Barley: production, improvement, and uses. Wiley, Hoboken. https://doi.org/10.1002/9780470958636
Van der Fels-Klerx HJ, Burgers SL, Booij CJ (2010) Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands. Food Addit Contam Part A 27(5):636–643. https://doi.org/10.1080/19440040903571762
Wegulo SN, Baenziger PS, Nopsa JH, Bockus WW, Hallen-Adams H (2015) Management of Fusarium head blight of wheat and barley. Crop Prot 73:100–107. https://doi.org/10.1016/j.cropro.2015.02.025
Acknowledgements
This Project was financially supported by the Bavarian State Ministry of the Environment and Consumer Protection in frame of the Project network BayKlimaFit (subproject 10). The authors want to thank the Bavarian State Research Centre (LfL), especially Dr. Markus Herz, for providing the sample material and Carolin Hutter as well as Regina Dittebrandt for the technical support. We are grateful to Alexander D. Coleman for critical reading of the manuscript.
Funding
This study was funded by the Bavarian State Ministry of the Environment and Consumer Protection in frame of the Project network BayKlimaFit (subproject 10: TGC01GCUFuE69781).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hofer, K., Hückelhoven, R. & Hess, M. Analysis of archive samples of spring and winter barley support an increase in individual Fusarium species in Bavarian barley grain over the last decades. J Plant Dis Prot 126, 247–254 (2019). https://doi.org/10.1007/s41348-019-00220-0
Received:
Accepted:
Published:
Issue Date:
Keywords
- Fusarium species
- Fusarium head blight
- Climate change
- Pathogen complex
- Archive samples
- Barley