Reaction of wild eggplant Solanum torvum to different species of root-knot nematodes from Turkey

Short Communication
  • 13 Downloads

Abstract

The cultivated eggplant species are susceptible to root-knot nematodes (Meloidogyne spp.). However, many wild Solanum species, such as S. torvum, S. sisymbriifolium, S. aethiopicum and S. warscewiczii, are resistant to some root-knot nematodes. Only S. torvum is employed as a rootstock for eggplant cultivation worldwide. This study investigated the response of S. torvum cv. Hawk against the root-knot nematodes Meloidogyne incognita, Mi-1 virulent M. incognita, M. javanica, M. arenaria and M. luci and M. hapla from Turkey, under controlled conditions. A local eggplant cultivar and a commercial eggplant hybrid were included in the bioassay. Eggplant seedlings were each inoculated with 1000 second-stage juveniles of Meloidogyne spp. and uprooted 8 weeks after nematode inoculation. Then, egg masses and galls on the roots were counted. S. torvum was resistant to M. incognita, Mi-1 virulent M. incognita, M. javanica, M. arenaria and M. luci, but susceptible to M. hapla. In Turkey, S. torvum has commonly been used as a rootstock against Meloidogyne spp. The study provided background information of S. torvum rootstock resistance to the mentioned populations of root-knot nematodes, except M. hapla.

Keywords

Eggplant Resistance Host response Root-knot nematode Solanum torvum 

Notes

Acknowledgements

The authors would like to thank Multi Tohum Tar. San. Tic. A.Ş. (Antalya, Turkey) for providing eggplant and tomato seedlings.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ali M, Matsuzoe N, Okubo H, Fujieda K (1992) Resistance of non-tuberous Solanum to root-knot nematode. J Jpn Soc Hortic Sci 60:921–926CrossRefGoogle Scholar
  2. Aydınlı G (2014) Orta Karadeniz Bölgesi seralarındaki kök-ur nematodu (Meloidogyne spp.) populasyonları üzerinde araştırmalar. Dissertation, Ondokuz Mayıs Üniversitesi, p 143Google Scholar
  3. Boiteux LS, Charchar JM (1996) Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed 115:198–200CrossRefGoogle Scholar
  4. Castagnone-Sereno P, Bongiovanni M, Dalmasso A (1993) Stable virulence against the tomato resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. Phytopathology 83:803–805CrossRefGoogle Scholar
  5. Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Orlando, pp 179–231Google Scholar
  6. Daunay MC, Dalmasso A (1985) Multiplication de Meloidogyne javanica, M. incognita et M. arenaria sur divers Solarium. Revue Nématol 8:31–34Google Scholar
  7. Devran Z, Söğüt MA (2009) Distribution and identification of root-knot nematodes from Turkey. J Nematol 41:128–133PubMedPubMedCentralGoogle Scholar
  8. Devran Z, Söğüt MA (2010) Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica 38:245–251CrossRefGoogle Scholar
  9. Devran Z, Süğüt MA, Gözel U, Tör M, Elekcioglu IH (2008) Analysis of genetic variation between populations of Meloidogyne spp. from Turkey. Russ J Nematol 16:143–149Google Scholar
  10. Devran Z, Söğüt MA, Mutlu N (2010) Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathol Mediterr 49:11–17Google Scholar
  11. Devran Z, Başköylü B, Taner A, Doğan F (2013) Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agric Scand Sect B J Soil Sci 45:395–402Google Scholar
  12. Di Vito M, Greco N, Carella A (1986) Effect of Meloidogyne incognita and importance of the inoculum on the yield of eggplant. J Nematol 18:487–490PubMedPubMedCentralGoogle Scholar
  13. Gerič Stare B, Strajnar P, Susič N, Urek G, Širca S (2017) Reported populations of Meloidogyne ethiopica in Europe identified as Meloidogyne luci. Plant Dis 101:1627–1632CrossRefGoogle Scholar
  14. Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 168:319–327CrossRefGoogle Scholar
  15. Hartman KM, Sasser JN (1985) Identification of Meloidogyne species on the basis of different host test and perineal pattern morphology. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne. Methodology, vol 2. North Carolina State University Graphics, Raleigh, pp 69–77Google Scholar
  16. Hebert Y (1985) Résistance comparée de 9 espèces du genre Solanum au flétrissement bactérien (Pseudomonas solanacearum) et au nématode Meloidogyne incognita. Intérêt pour l’amélioration de l’aubergine (Solanum melongena L.) en zone tropicale humide. Agronomie 5:27–32CrossRefGoogle Scholar
  17. Iberkleid I, Ozalvo R, Feldman L, Elbaz M, Patricia B, Horowitz SB (2014) Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. Phytopathology 104:484–496CrossRefPubMedGoogle Scholar
  18. Maleita C, Esteves I, Cardoso JMS, Cunha MJ, Carneiro RMDG, Abrantes I (2017) Meloidogyne luci, a new root-knot nematode parasitizing potato in Portugal. Plant Pathol.  https://doi.org/10.1111/ppa.12755 Google Scholar
  19. Mıstanoğlu I, Özalp T, Devran Z (2016) Response of tomato seedlings with different number of true leaves to Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949. Turk J Entomol 40:377–383Google Scholar
  20. Moens M, Perry RN, Starr JL (2009) Meloidogyne species—a diverse group of novel and important plant parasites. In: Moens M, Starr JL, Pery RN (eds) Root-knot nematodes. CAB International, Wallingford, pp 1–17Google Scholar
  21. Ornat C, Verdejo-Lucas S, Sorribas FJ (2001) A Population of Meloidogyne javanica from Spain virulent to the Mi resistance gene in tomato. Plant Dis 85:271–276CrossRefGoogle Scholar
  22. Rahman MA, Rashid MA, Salam MA, Masum ASMH, Hussain MM (2002) Performance of some grafted eggplant genotypes on wild Solanum root stocks against root-knot nematode. Online J Biol Sci 2:446–448CrossRefGoogle Scholar
  23. Roberts PA (1995) Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annu Rev Phytopathol 33:199–221CrossRefPubMedGoogle Scholar
  24. Tzortzakakis EA, Adam MAM, Blok VC, Paraskevopoulos C, Bourtzis K (2005) Occurrence of resistance-breaking populations of root-knot nematodes on tomato in Greece. Eur J Plant Pathol 113:101–105CrossRefGoogle Scholar
  25. Uehara T, Tateishi Y, Kadota Y, Iwahori H (2017) Differences in parasitism of Meloidogyne incognita and two genotypes of M. arenaria on Solanum torvum in Japan. J Phytopathol 165:575–579CrossRefGoogle Scholar
  26. Zhang GC, Zhu WL, Gai JY, Zhu YL, Yang LF (2015) Enhanced salt tolerance of transgenic vegetable soybeans resulting from overexpression of a novel Δ 1-pyrroline-5-carboxylate synthetase gene from Solanum torvum Swartz. Hortic Environ Biotechnol 56:94–104CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of AkdenizAntalyaTurkey

Personalised recommendations