Advertisement

Journal of Plant Diseases and Protection

, Volume 125, Issue 2, pp 121–125 | Cite as

Biocontrol of plant diseases is not an unsafe technology!

  • Eckhard Koch
  • J. Ole Becker
  • Gabriele Berg
  • Rüdiger Hauschild
  • Johannes Jehle
  • Jürgen Köhl
  • Kornelia Smalla
Commentary

Abstract

In their opinion paper "The unpredictable risk imposed by microbial secondary metabolites: how safe is biological control of plant diseases?" (J. Plant Dis. Prot. 124, 413-419;  https://doi.org/10.1007/s41348-017-0109-5), H.B. Deising, I. Gase and Y. Kubo criticize the use of microbial pesticides in plant protection. They point to the ability of microorganisms to form toxic metabolites and fear severe health problems when antagonistic microorganisms are increasingly released into agro-ecosystems. In our opinion, this view fails to reflect the reality because it largely ignores the ecology of microorganisms. In this contribution, we state reasons why biocontrol of plant diseases is a safe technology.

Keywords

Biocontrol Safety Registration Metabolites 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141CrossRefPubMedPubMedCentralGoogle Scholar
  2. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genom 14:121CrossRefGoogle Scholar
  3. Barnett S, Zhao S, Ballard R, Franco C (2017) Selection of microbes for control of Rhizoctonia root rot on wheat using a high throughput pathosystem. Biol Control 113:45–57CrossRefGoogle Scholar
  4. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefPubMedGoogle Scholar
  5. Berg G, Köberl M, Müller H, Rybakova D, Grosch R, Smalla K (2017) Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol Ecol 93(5):fix050.  https://doi.org/10.1093/femsec/fix050 CrossRefGoogle Scholar
  6. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8):fiw114.  https://doi.org/10.1093/femsec/fiw114 CrossRefPubMedGoogle Scholar
  7. Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ghoul M, Mitri S (2016) The ecology and evolution of microbial competition. Trends Microbiol 24:833–845CrossRefPubMedGoogle Scholar
  9. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307CrossRefPubMedGoogle Scholar
  10. Hennessy RC, Glaring MA, Olsson S, Stougaard P (2017) Transcriptomic profiling of microbe–microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani. BMC Res Notes 10:376CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kröber M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Hartmann A, Pühler A, Schlüter A (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252PubMedPubMedCentralGoogle Scholar
  12. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695CrossRefGoogle Scholar
  13. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Thomashow LS, Weller DM (2011) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78:804–812CrossRefPubMedGoogle Scholar
  14. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258CrossRefPubMedGoogle Scholar
  15. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547CrossRefPubMedGoogle Scholar
  16. Scheepmaker JWA, van de Kassteele J (2011) Effects of chemical control agents and microbial biocontrol agents on numbers of non-target microbial soil organisms: a meta-analysis. Biocontrol Sci Technol 21:1225–1242CrossRefGoogle Scholar
  17. Scherwinski K, Grosch R, Berg G (2008) Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 64:106–116CrossRefPubMedGoogle Scholar
  18. Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960CrossRefGoogle Scholar
  19. Schulz JS, Römmert A-K, Dammann U, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283CrossRefGoogle Scholar
  20. van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 109:1159–1164CrossRefPubMedPubMedCentralGoogle Scholar
  21. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206CrossRefPubMedGoogle Scholar
  22. Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, Schillinger DF, Paulitz TC (2013) Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Appl Environ Microbiol 79:7428–7438CrossRefPubMedPubMedCentralGoogle Scholar
  23. Young VB (2017) The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356:j831CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2018

Authors and Affiliations

  • Eckhard Koch
    • 1
  • J. Ole Becker
    • 2
  • Gabriele Berg
    • 3
  • Rüdiger Hauschild
    • 4
  • Johannes Jehle
    • 1
  • Jürgen Köhl
    • 5
  • Kornelia Smalla
    • 6
  1. 1.Institute for Biological ControlJulius Kühn-Institute (JKI)DarmstadtGermany
  2. 2.Department of NematologyUniversity of California, RiversideRiversideUSA
  3. 3.Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
  4. 4.GAB Consulting GmbHStadeGermany
  5. 5.Biointeractions and Plant HealthWageningen Plant ResearchWageningenThe Netherlands
  6. 6.Institute for Epidemiology and Pathogen DiagnosticsJulius Kühn-Institute (JKI)BraunschweigGermany

Personalised recommendations