Journal of Plant Diseases and Protection

, Volume 125, Issue 2, pp 187–195 | Cite as

Rapid monitoring of herbicide-resistant Alopecurus myosuroides Huds. using chlorophyll fluorescence imaging technology

  • Pei Wang
  • Gerassimos Peteinatos
  • Hui Li
  • Frank Brändle
  • Erhard Pfündel
  • Hans G. Drobny
  • Roland Gerhards
Original Article
  • 103 Downloads

Abstract

Sensor-based stress recognition is an effective tool for improving herbicide efficacy and selectivity. In this study, a chlorophyll fluorescence imaging sensor was used for measuring Maximal Photosystem II Quantum Yield (F v/F m) in Alopecurus myosuroides Huds. shortly after herbicide application. Five herbicides with different modes of action were sprayed on A. myosuroides field populations at three sites. Six herbicides were tested on herbicide-sensitive and herbicide-resistant A. myosuroides populations in the greenhouse. The field and greenhouse studies showed that F v/F m values of herbicide-sensitive and herbicide-resistant plants were significantly different 3 days after treatment (DAT). For the resistant populations, F v/F m values were equal to the untreated control plants. Therefore, ALS- and ACCase-inhibiting herbicides did not affect resistant populations. The PS II-inhibiting herbicide isoproturon reduced the F v/F m values of the sensitive plants faster than the resistant ones. In the greenhouse, the results were similar. A differentiation of sensitive and resistant weeds based on F v/F m values was possible already 1 DAT. We conclude that the chlorophyll fluorescence imaging sensor is capable of identifying herbicide-resistant weed populations shortly after herbicide application.

Keywords

Chlorophyll fluorescence Maximal PS II Quantum Yield Herbicide resistance Alopecurus myosuroides Huds. 

Notes

Acknowledgements

The authors would like to thank Dr. Jörg Kolbowski, Dr. Cornelia Köcher, Dr. Alexander Menegat, Dr. Yasmin Kaiser and Dr. Markus Sökefeld for their valuable advice and technical support. This project was funded by the Federal Ministry of Food and Agriculture in Germany (“BLE-Herbizidresistenz”—FKZ 2814705011) and the Chinese Scholarship Council (CSC, China, No. 201306350053).

References

  1. Abbaspoor M, Streibig JC (2005) Clodinafop changes the chlorophyll fluorescence induction curve. Weed Sci 53(1):1–9CrossRefGoogle Scholar
  2. Ahrens WH, Arntzen CJ, Stoller EW (1981) Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci 29(3):316–322Google Scholar
  3. Ali A, Machado VS (1981) Rapid detection of triazine resistant weeds using chlorophyll fluorescence. Weed Res 21(3–4):191–197CrossRefGoogle Scholar
  4. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190CrossRefGoogle Scholar
  5. Blair AM, Cussans JW, Lutman PJ (1999) A biological framework for developing a weed management support system for weed control in winter wheat: weed competition and time of weed control. In: Brightan crop protection conference-weeds 1999, Nov. 15–18, 1999, Brighton, pp 753–760Google Scholar
  6. Burgos NR, Tranel PJ, Streibig JC, Davis VM, Shaner D, Norsworthy JK, Ritz C (2013) Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci 61(1):4–20CrossRefGoogle Scholar
  7. Burnet MW, Hildebrand OB, Holtum JA, Powles SB (1991) Amitrole, triazine, substituted urea, and metribuzin resistance in a biotype of rigid ryegrass (Lolium rigidum). Weed Sci 39(3):317–323Google Scholar
  8. Carmer SG, Nyquist WE, Walker WM (1989) Least significant differences for combined analyses of experiments with two-or three-factor treatment designs. Agron J 81(4):665–672CrossRefGoogle Scholar
  9. Delye C, Matejicek A, Gasquez J (2002) PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) and ryegrass (Lolium rigidum Gaud.). Pest Manag Sci 58(5):474–478CrossRefPubMedGoogle Scholar
  10. Gerhards R (2013) Gemeinschaftsversuche Baden–Wuerttemberg 2013, Berichte aus dem Fachgebiet Herbologie der Universität Hohenheim. (Report of the joint field trials, Weed Science Department, University of Hohenheim). Report Nr. 53Google Scholar
  11. Gerhards R, Dentler J, Gutjahr C, Auburger S, Bahrs E (2016) An approach to investigate the costs of herbicide resistant Alopecurus myosuroides Huds. Weed Res 56:407–414CrossRefGoogle Scholar
  12. Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39(1):101–138CrossRefGoogle Scholar
  13. Heap I (2017) The international survey of herbicide resistant weeds. Tuesday, September 12, 2017. www.weedscience.org
  14. Hensley JR (1981) A method for identification of triazine resistant and susceptible biotypes of several weeds. Weed Sci 29(1):70–73Google Scholar
  15. Hess FD (2000) Light-dependent herbicides - an overview. Weed Sci 48(2):160–170CrossRefGoogle Scholar
  16. Kaiser YI, Menegat A, Gerhards R (2013) Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res 53(6):399–406CrossRefGoogle Scholar
  17. Kaundun SS, Hutchings SJ, Dale RP, Bailly GC, Glanfield P (2011) Syngenta ‘RISQ’ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Res 51(3):284–293CrossRefGoogle Scholar
  18. Klem K, Špundová M, Hrabalova H, Nauš J, Váňová M, Masojidek J, Tomek P (2002) Comparison of chlorophyll fluorescence and whole-plant bioassays of isoproturon. Weed Res 42(5):335–341CrossRefGoogle Scholar
  19. Kukorelli G, Reisinger P, Pinke G (2013) ACCase inhibitor herbicides–selectivity, weed resistance and fitness cost: a review. Int J Pest Manag 59(3):165–173CrossRefGoogle Scholar
  20. Melander B (1995) Impact of drilling date on Apera spica-venti L. and Alopecurus myosuroides Huds. in winter cereals. Weed Res 35(3):157–166CrossRefGoogle Scholar
  21. Moss SR (1990) Herbicide cross-resistance in slender foxtail (Alopecurus myosuroides). Weed Sci 38(6):492–496Google Scholar
  22. Moss SR, Clarke JH, Blair AM, Culley TN (1999) The occurrence of herbicide-resistant grass-weeds in the United Kingdom and a new system for designating resistance in screening assays. In: Brighton crop protection conference weeds, vol 2, pp 179–184Google Scholar
  23. Moss SR, Perryman SA, Tatnell LV (2007) Managing herbicide-resistant blackgrass (Alopecurus myosuroides): theory and practice. Weed Technol 21(2):300–309CrossRefGoogle Scholar
  24. Norsworthy JK, Talbert RE, Hoagland RE (1998) Chlorophyll fluorescence for rapid detection of propanil-resistant barnyardgrass. Weed Sci 46(2):163–169Google Scholar
  25. Oettmeier W (1999) Herbicide resistance and supersensitivity in photosystem II. Cell Mol Life Sci 55(10):1255–1277CrossRefPubMedGoogle Scholar
  26. Pfister K, Arntzen CJ (1979) The mode of action of photosystem II-specific inhibitors in herbicide-resistant weed biotypes. Zeitschrift für Naturforschung C 34(11):996–1009Google Scholar
  27. Pfister K, Steinback KE, Gardner G, Arntzen CJ (1981) Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci 78(2):981–985CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pietsch C, Krause E, Burnison BK, Steinberg CE, Pflugmacher S (2012) Effects and metabolism of the phenylurea herbicide isoproturon in the submerged macrophyte Ceratophyllum demersum L. J Appl Bot Food Qual 80(1):25–30Google Scholar
  29. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Riethmüller-Haage I, Bastiaans L, Harbinson J, Kempenaar C, Kropff MJ (2006) Influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation, regulation and organisation of photosynthesis in Solanum nigrum. Photosynth Res 88:331–341CrossRefPubMedGoogle Scholar
  31. Roháček K, Barták M (1999) Technique of modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37(3):339–363CrossRefGoogle Scholar
  32. Rutherford AW, Faller P (2003) Photosystem II: evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 358(1429):245–253CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68(6):1175–1184CrossRefPubMedGoogle Scholar
  34. Van Oorschot JLP, Van Leeuwen PH (1992) Use of fluorescence induction to diagnose resistance of Alopecurus myosuroides Huds. (black-grass) to chlorotoluron. Weed Res 32(6):473–482CrossRefGoogle Scholar
  35. Vencill WK, Foy CL (1988) Distribution of triazine-resistant smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) in Virginia. Weed Sci 36(4):497–499Google Scholar
  36. Ventrella A, Catucci L, Agostiano A (2010) Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry 79(1):43–49CrossRefPubMedGoogle Scholar
  37. Wang P, Peteinatos G, Li H, Gerhards R (2016) Rapid in-season detection of herbicide resistant Alopecurus myosuroides using a mobile fluorescence imaging sensor. Crop Prot 89:170–177CrossRefGoogle Scholar
  38. Whitcomb CE (1999) An introduction to ALS-inhibiting herbicides. Toxicol Ind Health 15(1–2):232–240CrossRefGoogle Scholar
  39. Xiong J, Jee G, Subramaniam S (1996) Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci 5(10):2054–2073CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhang CJ, Lim SH, Kim JW, Nah G, Fischer A, Kim DS (2016) Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species. Weed Res 56(6):424–433CrossRefGoogle Scholar

Copyright information

© Deutsche Phytomedizinische Gesellschaft 2017

Authors and Affiliations

  • Pei Wang
    • 1
  • Gerassimos Peteinatos
    • 1
  • Hui Li
    • 1
  • Frank Brändle
    • 2
  • Erhard Pfündel
    • 3
  • Hans G. Drobny
    • 4
  • Roland Gerhards
    • 1
  1. 1.Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
  2. 2.IDENTXX GmbHStuttgartGermany
  3. 3.Heinz Walz GmbHEffeltrichGermany
  4. 4.DuPont de Nemours (Deutschland) GmbHNeu-IsenburgGermany

Personalised recommendations