Skip to main content
Log in

Collembolans and soil nematodes as biological regulators of the plant pathogen Fusarium culmorum

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

A field study was conducted to investigate biocontrol and interaction effects of important members (Folsomia candida, Collembola, and Aphelenchoides saprophilus, Nematoda) of the soil food web on the plant pathogenic fungus Fusarium culmorum in wheat straw. The soil fauna was introduced in minicontainers in different numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. Minicontainers were established in the topsoil of a winter wheat field after harvest. After 2 and 4 weeks, biomass of F. culmorum was detected in samples of soil and wheat straw using double antibody sandwich (DAS) ELISA method. Furthermore, individual density of collembolans and nematodes was determined. The content of Fusarium biomass was reduced significantly throughout all treatments after 2 weeks. After 4 weeks of minicontainer exposure, Fusarium biomass decreased significantly in treatments containing collembolans and nematodes in single culture compared to the control. The results demonstrate the potential of collembolans and nematodes as biological regulators. Furthermore, the introduced soil fauna contributes to a sustainable control of fungal plant pathogens in wheat straw, thus reducing the risk of plant diseases as an important ecosystem service for soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Baermann G (1917) Eine einfache Methode zur Auffindung von Ankylostomum (Nematoden)-Larven in Erdproben. Geneeskd Tijdschr Ned Indie 57:131–137

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1, 1–5

  • Böllmann J, Elmer M, Wöllecke J, Raidl S, Hüttl RF (2010) Defense strategies of soil fungi to prevent grazing by Folsomia candida (Collembola). Pedobiologia 53:107–114

    Article  Google Scholar 

  • EIP-AGRI Focus Group (2015) IPM practices for soil-borne diseases. Final report. http://ec.europa.eu/eip/agriculture/sites/agri-eip/files/eip-agri_focus_group_on_ipm_practices_for_soil-borne_diseases_final_report_2015.pdf Accessed 20 Mar 2017

  • Eisenbeis G, Lenz R, Heiber T (1999) Organic residue decomposition: the minicontainer-system a multifunctional tool in decomposition studies. Environ Sci Pollut R 6(4):220–224. doi:10.1007/BF02987332

    Article  CAS  Google Scholar 

  • Friberg H, Lagerlöf J, Rämert B (2005) Influence of soil fauna and fungal plant pathogens in agricultural and horticultural systems. Biocontrol Sci Technol 15:641–658. doi:10.1080/09583150500086979

    Article  Google Scholar 

  • Gupta MC (1986) Biological control of Fusarium moniliforme Sheldon and Pythium butleri Subramaniam by Aphelenchus avenae Bastian in chitin and cellulose-amended soils. Soil Biol Biochem 18:327–329. doi:10.1016/0038-0717(86)90069-6

    Article  Google Scholar 

  • Hasna MK, Lagerlöf J, Rämert B (2008) Effects of fungivorous nematodes on corky root disease of tomato grown in compost-amended soil. Acta Agric Scand Sect B Soil Plant Sci 58:145–153. doi:10.1080/09064710.2010.488655

    Google Scholar 

  • Kim SH, Vujanovic V (2016) Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Appl Microbiol Biotechnol 100:5257–5272. doi:10.1007/s00253-016-7539-z

    Article  CAS  PubMed  Google Scholar 

  • Lagerloef J, Insunza V, Lundegardh B, Raemert B (2011) Interaction between a fungal plant disease, fungivorous nematodes and compost suppressiveness. Acta Agric Scand Sect B Soil Plant Sci 61:372–377. doi:10.1080/09064710.2010.488655

    Google Scholar 

  • Larsen J, Johansen A, Larsen SE, Heckmann LH, Jakobsen I, Krogh PH (2008) Population performance of collembolans feeding on soil fungi from different ecological niches. Soil Biol Biochem 40:360–369. doi:10.1016/j.soilbio.2007.08.016

    Article  CAS  Google Scholar 

  • Lartey RT, Curl EA, Peterson CM (1994) Interactions of mycophagous Collembola and biological control fungi in the suppression of Rhizoctonia solani. Soil Biol Biochem 26(1):81–88

    Article  Google Scholar 

  • Lee Q, Widden P (1995) Folsomia candida, a “fungivorous” collembolan, feeds preferentially on nematodes rather than soil fungi. Soil Biol Biochem 21(4/5):689e–690e

    Google Scholar 

  • Leplat J, Friberg H, Abid M, Steinberg C (2013) Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron Sustain Dev 33:97–111. doi:10.1007/s13593-012-0098-5

    Article  Google Scholar 

  • Leslie JF, Summerell BA (2013) An overview of Fusarium. In: Brown DW, Proctor RH (eds) Fusarium: genomics, molecular and cellular biology. Caister Academic Press, Poole, pp 1–10

    Google Scholar 

  • Lootsma M, Scholte K (1997a) Effects of the springtail Folsomia fimetaria and the nematode Aphelenchus avenae on Rhizoctonia solani stem infection of potato at temperatures of 10 and 15 °C. Plant Pathol 46:203–208

    Article  Google Scholar 

  • Lootsma M, Scholte K (1997b) Effects of the soil moisture content on the suppression of Rhizoctonia stem canker on potato by the nematode Aphelenchus avenae and the springtail Folsomia fimentaria. Plant Pathol 46:209–215

    Article  Google Scholar 

  • Lucas JA (2011) Advances in plant disease and pest management. J Agric Sci 149:91–114. doi:10.1017/S0021859610000997

    Article  Google Scholar 

  • MacFadyen A (1961) Improved funnel-type extractors for soil arthropods. J Anim Ecol 30:171–184. doi:10.2307/2120

    Article  Google Scholar 

  • Okada H (2006) Ecology of fungivorous nematodes and their use for suppression of plant diseases. B Nat Agric Res C Tohoku 105:155–197 (published in Japanese with English summary)

    Google Scholar 

  • Oldenburg E, Kramer S, Schrader S, Weinert J (2008) Impact of the earthworm Lumbricus terrestris on the degradation of Fusarium-infected and deoxynivalenol-contaminated wheat straw. Soil Biol Biochem 40:3049–3053. doi:10.1016/j.soilbio.2008.09.004

    Article  CAS  Google Scholar 

  • Parkinson D (1983) Functional relationships between soil organisms. In: Lebrun et al (eds) New trends in soil biology. Dieu-Brichard, Louvain la Neuve, pp 153–165

    Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pereyra SA, Dill-Macky R (2008) Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Dis 92:800–807. doi:10.1094/PDIS-92-5-0800

    Article  Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna population and their role in decomposition processes. Oikos 39:287–388

    Google Scholar 

  • Pfeffer SP, Filser J (2010) Attraction to prey and prey-associated odours by the predatory mite Hypoaspis aculeifer in a soil experimental system. Soil Biol Biochem 42:1355–1357. doi:10.1016/j.soilbio.2010.03.018

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) _nlme: linear and nonlinear mixed effects models. R package version 3, 1–120

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ruess L, Zapata EJG, Dighton J (2000) Food preferences of a fungal-feeding Aphelenchoides species. Nematology 2:223–230. doi:10.1163/156854100508962

    Article  Google Scholar 

  • Ruess L, Häggblom MM, Zapata EJG, Dighton J (2002) Fatty acids of fungi and nematodes—possible biomarkers in the soil food chain? Soil Biol Biochem 34:745–756. doi:10.1016/S0038-0717(01)00231-0

    Article  CAS  Google Scholar 

  • Schrader S, Kramer S, Oldenburg E, Weinert J (2009) Uptake of deoxynivalenol by earthworms from Fusarium-infected wheat straw. Mycotoxin Res 25:53–58. doi:10.1007/s12550-009-0007-1

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi H, Enami Y, Okano S (2003) Folsomia hidakana (Collembola) prevents damping-off disease in cabbage and Chinese cabbage by Rhizoctonia solani. Pedobiologia 47:33–38. doi:10.1078/0031-4056-00167

    Article  Google Scholar 

  • Turbé A, De Toni A, Benito P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio intelligence service, IRD, and NIOO, Report for European Commission (DG Environment)

  • van Vliet PCJ, Beare MH, Coleman DC, Hendrix PF (2004) Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Appl Soil Ecol 25:147–160. doi:10.1016/j.apsoil.2003.08.004

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vogelgsang S, Hecker A, Musa T, Dorn B, Forrer H-R (2011) On-farm experiments over 5 years in a grain maize/winter wheat rotation: effect of maize residue treatments on Fusarium graminearum infection and deoxynivalenol contamination in wheat. Mycotoxin Res 27:81–96. doi:10.1007/s12550-010-0079-y

    Article  CAS  PubMed  Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Weinert J (2013) Nematode-collembolan-interaction promotes the degradation of Fusarium biomass and deoxynivalenol according to soil texture. Soil Biol Biochem 57:903–910. doi:10.1016/j.soilbio.2012.11.001

    Article  CAS  Google Scholar 

  • Wolfarth F, Wedekind S, Schrader S, Oldenburg E, Brunotte J (2015) Regulation of the mycotoxin deoxynivalenol by Folsomia candida (Collembola) and Aphelenchoides saprophilus (Nematoda) in an on-farm experiment. Pedobiologia 58:41–47. doi:10.1016/j.pedobi.2015.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Sabine El Sayed, Berthold Ortmeier, Evelin Schummer, Sina Wedekind and Marco Hornbostel is gratefully acknowledged. For providing the climate data of the field site we thank Jan Bug from the Institute of Physical Geography and Landscape Ecology, University of Hannover. The study was supported by the German Federal Environmental Foundation, Deutsche Bundesstiftung Umwelt (DBU), by providing a personal grant to Friederike Meyer-Wolfarth. Furthermore, the financial support of the Brigitte and Wolfram Gedek-Stiftung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Meyer-Wolfarth.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer-Wolfarth, F., Schrader, S., Oldenburg, E. et al. Collembolans and soil nematodes as biological regulators of the plant pathogen Fusarium culmorum . J Plant Dis Prot 124, 493–498 (2017). https://doi.org/10.1007/s41348-017-0111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0111-y

Keywords

Navigation