Journal of Plant Diseases and Protection

, Volume 125, Issue 2, pp 227–230 | Cite as

Rapid detection of Cucumber mosaic virus isolates representing distinct phylogenetic subgroups by reverse transcription, loop-mediated isothermal amplification

  • Beata Hasiów-Jaroszewska
  • Marta Kasprowicz
  • Natasza Borodynko-Filas
Short Communication


Several outbreaks of Cucumber mosaic virus in cucurbit crops have been observed recently in Poland. Based on the phylogenetic analysis of the genes’ encoding movement and coat protein, Polish CMV isolates from zucchini were classified into two subgroups: IA and II. A reverse transcription, loop-mediated amplification method (RT-LAMP) was developed for rapid and effective detection of genetically diverse CMV isolates. RT-LAMP was performed with a set of six primers, the design of which was based on the coat protein gene. Positive effects of the RT-LAMP were visualized by direct staining of the reaction with fluorescent dyes, agarose gel electrophoresis, and analysis of the amplification curves in real-time conditions. The RT-LAMP method developed here was capable of the detection of diverse CMV isolates in less than 1 h. The sensitivity of RT-LAMP was tenfold higher than that of conventional RT-PCR.


CMV Detection Genetic diversity RT-LAMP 



This study was supported by the Project No. 2014/13/B/NZ9/02108 of the National Science Centre in Poland (to NBF).


  1. 1.
    Edwardson, J. R., & Christie, R. G. (1991). Cucumoviruses. CRC handbook of viruses infecting legumes (pp. 293–319). Boca Raton: CRC Press.Google Scholar
  2. 2.
    Palukaitis, P., Roossinck, M. J., Dietzgen, R. G., & Franki, R. I. B. (1992). Cucumber mosaic virus. Advance in Virus Research, 41, 281–348.CrossRefGoogle Scholar
  3. 3.
    Zitter, T. A., Murphy, J. F. Cucumber mosaic. The Plant Health Instructor. doi: 10.1094/PHI-I-2009-0518-01.
  4. 4.
    Roossinck, M. J., & Palukaitis, P. (1990). Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of Cucumber mosaic virus. Molecular Plant-Microbe Interactions, 3, 188–192.CrossRefGoogle Scholar
  5. 5.
    Jórda, C., Alfaro, A., Aranda, M. A., Moriones, E., & Garcia-Arenal, F. (1992). Epidemic of Cucumber mosaic virus plus satellite RNA in tomatoes in Eastern Spain. Plant Disease, 76(4), 363–366.CrossRefGoogle Scholar
  6. 6.
    Lee, J. A., Choi, S. K., Yoon, J. Y., Hong, J. S., Ryu, K. H., & Lee, S. Y. (2007). Variation in the pathogenicity of lily isolates of Cucumber mosaic virus. Journal of Plant Pathology, 23, 251–259.CrossRefGoogle Scholar
  7. 7.
    Szilassy, D., Salánki, K., & Baálzs, E. (1999). Stunting induced by Cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Molecular Plant–Microbe Interactions, 12, 1105–1113.CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki, M., Kuwata, S., Masuta, C., & Takanami, Y. (1995). Point mutations in the coat protein of Cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. Journal of General Virology, 76, 1791–1799.CrossRefPubMedGoogle Scholar
  9. 9.
    Canto, T., Prior, D. A. M., Hellwald, K. H., Oparka, K. J., & Palukaitis, P. (1997). Characterization of Cucumber mosaic virus. IV. Movement and coat protein are both essential for cell-to cell movement of cucumber mosaic virus. Virology, 237, 237–248.CrossRefPubMedGoogle Scholar
  10. 10.
    Perry, K. L., Zhang, L., & Palukaitis, P. (1994). Mapping determinants in Cucumber mosaic virus for transmission by Aphis gossypii. Virology, 205, 591–595.CrossRefPubMedGoogle Scholar
  11. 11.
    Jacquemond, M. (2012). Cucumber mosaic virus. Advance virus research, 84 (pp. 440–491). USA: Elsevier.Google Scholar
  12. 12.
    Roossinck, M. J. (2002). Evolutionary history of Cucumber mosaic virus deduced by phylogenetic analysis. Journal of Virology, 76, 3382–3387.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roossinck, M. J., Zhang, L., & Hellwald, K.-H. (1999). Rearrangements in the 50 nontranslated region and phylogenetic analyses of Cucumber mosaic virus RNA3 indicate radial evolution of three subgroups. Journal of Virology, 73, 6752–6758.PubMedPubMedCentralGoogle Scholar
  14. 14.
    García-Arenal, F., & Palukaitis, P. (2008). Cucumber mosaic virus. In B. W. J. Mahy & M. H. V. van Regenmortel (Eds.), Desk encyclopedia of plant and fungal virology (pp. 171–176). Amsterdam: Elsevier.Google Scholar
  15. 15.
    Hasiów-Jaroszewska, B., Chrzanowski, M., Budzyńska, D., Rymelska, N., & Borodynko-Filas, N. (2017). Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among Cucumber mosaic virus isolates from zucchini in Poland. Archives of Virology. doi: 10.1007/s00705-017-3285-5.PubMedGoogle Scholar
  16. 16.
    Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, 63.CrossRefGoogle Scholar
  17. 17.
    Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V., & Morita, K. (2008). Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Reviews in Medical Virology, 18, 407–421.CrossRefPubMedGoogle Scholar
  18. 18.
    Hasiów-Jaroszewska, B., & Borodynko, N. (2013). Detection of Pepino mosaic virus isolates from tomato by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology, 158, 2153–2156.CrossRefPubMedGoogle Scholar
  19. 19.
    Keizerweerd, A., Chandra, A., & Grisham, M. P. (2015). Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane. Journal of Virological Methods, 212, 23–29.CrossRefPubMedGoogle Scholar
  20. 20.
    Jeong, J., Cho, S.-Y., Lee, W.-H., Lee, K., & Ju, H.-J. (2015). Development of a rapid detection method for Potato virus X by reverse transcription loop-mediated isothermal amplification. Plant Pathology Journal, 31(3), 219–225.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bashir, N. S., Kalhor, M. R., & Zarghani, S. N. (2006). Detection, differentiation and phylogenetic analysis of Cucumber mosaic virus isolates from cucurbits in the northwest region of Iran. Virus Genes, 32, 277–288.CrossRefPubMedGoogle Scholar
  22. 22.
    Peng, J., Shi, M., Xia, Z., Huang, J., & Fan, Z. (2012). Detection of Cucumber mosaic virus isolates from banana by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology, 157, 2213–2217.CrossRefPubMedGoogle Scholar
  23. 23.
    Bhat, A. I., Siljo, A., & Deeshma, K. P. (2013). Rapid detection of piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP). Journal of Virological Methods, 193, 190–196.CrossRefPubMedGoogle Scholar
  24. 24.
    Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16, 223–229.CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2017

Authors and Affiliations

  • Beata Hasiów-Jaroszewska
    • 1
  • Marta Kasprowicz
    • 1
  • Natasza Borodynko-Filas
    • 1
  1. 1.Department of Virology and BacteriologyInstitute of Plant Protection-National Research InstitutePoznańPoland

Personalised recommendations