Skip to main content

Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey

Abstract

In vitro and in planta determination and quantification of deoxynivalenol (DON) are a crucial step in food safety. tri13 amplicons of 282 bp and tri3 partial region of 863 bp were obtained from 16 isolates with DON and 15-acetyldeoxynivalenol (15-AcDON) mycotoxin profiles. Similarly, 42 3-acetyldeoxynivalenol (3-AcDON) isolates yielded 282-bp band of tri13 and 583 bp of tri3 gene in multiplex polymerase chain reaction (PCR) assays. None of the isolates were characterized as NIV producers via PCR. All Fusarium isolates have been determined as high-level DON producers (more than 1 ppm) via tri5tri6 intergenic regions polymorphisms. tri11 expression via reverse transcriptase PCR (RT-PCR) confirmed results obtained at genomic level. High-pressure liquid chromatographic (HPLC) analysis showed that DON and/or acetylated derivatives can be co-produced with NIV. Even if each assay characterized Turkish Fusarium species as high trichothecene producer via PCR assays, HPLC analysis yielded 0–2481 µg/kg level of trichothecene production including DON, 3-AcDON and NIV. In this study, chemotype determination was carried out via multiplex PCR and tri13, and tri3 genes were co-targeted in a single reaction tube. It is posited that this is the first report on low- and high-level DON production differentiation analysis in Fusarium graminearum isolates via tri5tri6 intergenic region analysis worldwide. Results showed that high- and low-DON production potential of F. culmorum isolates’ from tri5 to tri6 nucleotide data could be useful in other Fusarium sp. characterization. This study covers the widest range of geographical regions in Turkey to be subjected to comprehensive class B-trichothecene analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Alexander NJ, McCormick SP, Waalwijk C, Lee TVD, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135–161

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bakan B, Delville CG, Pinson L, Richard-Molard D, Fournier E, Brygoo Y (2002) Identification of Fusarium culmorum strains producing large and small amounts of deoxinivalenol. Appl Environ Microbiol 68(11):5472–5479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bily AC et al (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117–126

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32(2):121–133

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Burgess LW, Summerrell BA, Bullock S, Gott KP, Backhouse D (1994) Laboratory Manual for Fusarium Research, 3rd edn. University of Sydney Press, Sydney, pp 12–16

    Google Scholar 

  7. 7.

    Castañares E, Albuquerque DR, Dinolfo MI, Pinto VF, Patriarca A, Stenglein SA (2014) Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Int J Food Microbiol 179:57–63

    Article  PubMed  Google Scholar 

  8. 8.

    Chandler EA, Simpson DR, Thomsett MA, Nicholson P (2003) Development of PCR assays to tri7 and tri13 trichothecene biosynthetic and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol 62:355–367

    CAS  Article  Google Scholar 

  9. 9.

    Chang HL, DeVries JW, Larson PA, Patel HH (1984) Rapid determination of deoxynivalenol (vomitoxin) by liquid chromatography using modifie Romer cleanup column. J Assoc Off Anal Chem 67:52–54

    CAS  PubMed  Google Scholar 

  10. 10.

    Cuomo CA et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Foroud NA, Eudes F (2009) Trichothecenes in cereal grains. Int J Mol Sci 10:147–173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Gilbert J, Abramson D, Mccallum B, Clear R (2001) Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins. Mycopathologia 153:209–215

    Article  Google Scholar 

  14. 14.

    Gutleb AC, Morrison E, Murk AJ (2002) Cytotoxicity assay for mycotoxins produced by Fusarium strains. Environ Toxicol Pharmacol 11:309–320

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Haratian M, Sharifnabi B, Alizadeh A, Safaie N (2008) PCR analysis of the tri13 gene to determine the genetic potential of Fusarium graminearum isolates from Iran to produce nivalenol and deoxynivalenol. Mycopathologia 166:109–116

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hue FX, Huerre M, Rouffault MA, Bievre CD (1999) Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol 37:2434–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P (2004) Determination of deoxinivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol 53:182–190

    CAS  Article  Google Scholar 

  18. 18.

    Ji L, Cao K, Hu T, Wang S (2007) Determination of deoxinivalenol and nivalenol chemotypes of Fusarium graminearum isolates from China by PCR assay. J Phytopathol 155:505–512

    CAS  Article  Google Scholar 

  19. 19.

    Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H, Shibata T, Yamaguchi I (2003) The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539:105–110

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, gene and evolution. Biosci Biotechnol Biochem 71:2105–2123

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lee T, Oh DW, Kim HS, Lee J, Kim YH, Yun SH, Lee YW (2001) Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67:2966–2972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lee T, Han YH, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol- producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lee J, Kim H, Jeon JJ, Kim HS, Zeller KA, Carter LLA, Leslie JF, Lee YW (2012) Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl Environ Microbiol 78:2161–2167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li HP, Wu AB, Zhao CS, Scholten O, Löffler H, Liao YC (2005) Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. FEMS Microbiol Lett 243:505–511

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lysøe E et al (2014) The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS ONE 9(11):1–17

    Article  Google Scholar 

  26. 26.

    Malbran I, Mourelos CA, Girotti JR, Balatti PA, Lori GA (2014) Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Phytopathology 104:357–364

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Mert-Türk F, Gencer G (2013) Distribution of the 3-ADON, 15-ADON, and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot Sci 49(2):57–64

    Google Scholar 

  28. 28.

    Mert-Türk F, Gencer R, Kahriman F (2014) Chemotyping of the Fusarium graminearum isolates and variation in aggressiveness against wheat heads. J Anim Plant Sci 24(6):1858–1862

    Google Scholar 

  29. 29.

    Miller JD, Greenhalgh R, Wang YZ, Lu M (1991) Trichothecene chemotypes of three Fusarium species. Mycologia 83:121–130

    CAS  Article  Google Scholar 

  30. 30.

    Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53:17–37

    CAS  Article  Google Scholar 

  31. 31.

    Nielsen LK, Jensen JD, Rodríguez A, Jørgensen LN, Justesen AF (2012) TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157:384–392

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Nielsen KF, Frisvad JC, Logrieco A (2015) Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins. J Food Prot 77(5):805–813

    Google Scholar 

  33. 33.

    Niessen L (2007) PCR-based diagnosis and quantification of mycotoxin producing fungi. Int J Food Microbiol 19:38–46

    Article  Google Scholar 

  34. 34.

    Niu C, Kebede H, Auld DL, Woodward JE, Burow G, Wright RJ (2008) A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. Afr J Biotechnol 7(16):2818–2822

    CAS  Google Scholar 

  35. 35.

    Palencia ER, Mitchell TR, Snook ME, Glenn AE, Gold S, Hinton DM, Riley RT, Bacon CW (2014) Analyses of black Aspergillus species of peanut and maize for ochratoxins and fumonisins. J Food Prot 77(5):805–813

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  37. 37.

    Pasquali M, Migheli Q (2014) Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int J Food Microbiol 189:164–182

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Paulitz TC, Smiley RW, Cook RJ (2002) Insights into the prevalence and management of soilborne cereal pathogens under direct seeding in the Pacific Northwest, U.S.A. Can J Plant Pathol 24:416–428

    Article  Google Scholar 

  39. 39.

    Saharan MS, Kumar J, Nagarajan S (2004) Fusarium head blight (FHB) or head scab of wheat—a review. Proc Natl Acad Sci India 3:255–268

    Google Scholar 

  40. 40.

    Scherm B, Orru M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q (2011) Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Mol Plant Pathol 12(8):759–771

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sudakin DL (2003) Trichothecenes in the environment: relevance to human health. Toxicol Lett 143:97–107

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tunali B, Özseven İ, Büyük O, Erdurmuş D, Demirci A (2006) Fusarium head blight and deoxynivalenol accumulation of wheat in Marmara region and reactions of wheat cultivars and lines to F. graminearum and Fusarium culmorum. Plant Pathol J 5(2):150–156

    Article  Google Scholar 

  45. 45.

    Tunali B, Nicol JM, Hodson D, Uçkun Z, Büyük O, Erdurmuş D, Hekimhan H, Aktaş H, Akbudak AM, Bağci SA (2008) Root and crown rot fungi associated with spring, facultative, and winter wheat in Turkey. Plant Dis 92(9):1299–1306

    Article  Google Scholar 

  46. 46.

    Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF, Liao YC (2008) Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. Int J Mol Sci 9:2495–2504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Windels CR (2000) Economic and social impacts of fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90(1):17–21

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Yli-Mattila T, Rämö S, Hietaniemi V, Hussien T, Carlobos-Lopez AL, Cumagun CJR (2013) Molecular quantification and genetic diversity of toxigenic Fusarium species in Northern Europe as compared to those in Southern Europe. Microorganisms 1:162–174

    Article  Google Scholar 

  49. 49.

    Yörük E, Albayrak G (2012) Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia 173:53–61

    Article  PubMed  Google Scholar 

  50. 50.

    Yörük E, Albayrak G (2013) Genetic characterization of Fusarium graminearum and F. culmorum isolates from Turkey by using random-amplified polymorphic DNA. Genet Mol Res 12(2):1360–1372

    Article  PubMed  Google Scholar 

  51. 51.

    Yörük E, Albayrak G (2014) Tri4 and tri5 gene expression analysis in Fusarium graminearum and F. culmorum isolates by qPCR. Plant Pathol J 13(2):133–138

    Article  Google Scholar 

  52. 52.

    Yörük E, Gazdağli A, Albayrak G (2014) Class B trichothecene chemotyping in Fusarium species by PCR assay. Genetika 46(3):661–669

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Board of Regents of Istanbul Yeni Yüzyil University and TÜBİTAK 109O476 and 111O835 numbered projects. Fungal material was obtained from TÜBİTAK projects numbered 109O476 and 111O835.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emre Yörük.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yörük, E., Tunali, B., Kansu, B. et al. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. J Plant Dis Prot 123, 177–186 (2016). https://doi.org/10.1007/s41348-016-0027-y

Download citation

Keywords

  • Fusarium graminearum
  • Fusarium culmorum
  • Deoxynivalenol
  • PCR
  • HPLC