Skip to main content
Log in

Assimilating the Subic radar data in the WRF model for tropical cyclone-enhanced heavy monsoon rainfall prediction in Metro Manila

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Metro Manila's rapid urbanization in recent decades has made it vulnerable to flooding during its rainy season. Disaster mitigation of such hazards requires the synergistic use of advanced weather observation and forecasting systems. This study explores the impact of radar data assimilation (DA) on the quantitative precipitation forecast skills of the Weather and Research Forecasting (WRF) model during three selected tropical cyclone-enhanced heavy monsoon rainfall events. The radar reflectivity data from the S-band Subic radar station was assimilated into the WRF model to assess the efficacy of using the three-dimensional variational (3DVAR) DA system. Results indicate that while the DA of radar reflectivity resulted in changes in the model’s hydrometeor budgeting where the presence of higher reflectivity observations increased the rainwater mixing ratio in the assimilated model, and slight improvements were observed for rainfall < 30 mm (i.e. lower bias, higher accuracy score) on 1 to 2-day lead time forecasts, overall, those changes were not significant enough to statistically improve the WRF model’s rainfall forecast skills compared to the non-DA model runs. In the conduct of this study, we found several limitations in the radar data. Hence, recommendations in the radar data characteristics and best practices for a successful DA implementation are provided, highlighting the challenges of DA forecasting for areas in the Philippines prone to weather-related hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. PSA (2021a). Retrieved from: https://psa.gov.ph/population-and-housing/ node/165009 on 10 Jan 2022

  2. PSA (2021b). Retrieved from: https://psa.gov.ph/content/highlights-national-capital-region-ncr-population-2020-census-population-and-housing-2020 on 10 Jan 2022

  3. Shatkin, G. (2004). Planning to forget: Informal settlements as’ forgotten places’ in globalising Metro Manila. Urban Studies, 41(12), 2469–2484.

    Article  Google Scholar 

  4. Porio, E. (2011). Vulnerability, adaptation, and resilience to floods and climate change-related risks among marginal, riverine communities in Metro Manila. Asian Journal of Social Science, 39(4), 425–445.

    Article  Google Scholar 

  5. Bagtasa, G. (2020). 118-year climate and extreme weather events of Metropolitan Manila in the Philippines. International Journal of Climatology, 40(2), 1228–1240.

    Article  Google Scholar 

  6. Wang, B. (2002). Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 15(4), 386–398.

    Article  Google Scholar 

  7. He, J.-H. (2009). A review of the Asian-Pacific monsoon. Atmospheric and Oceanic Science Letters, 2(2), 91–96.

    Article  Google Scholar 

  8. Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., II., Chua, K. C., & Olaguera, L. M. (2013). A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmospheric research, 122, 609–616.

    Article  Google Scholar 

  9. Bagtasa, G. (2020). Influence of Madden–Julian oscillation on the intraseasonal variability of summer and winter monsoon rainfall in the Philippines. Journal of Climate, 33(22), 9581–9594.

    Article  Google Scholar 

  10. Lagmay, A. M. F., Mendoza, J., Punay, K., Tingin, N. E., Delmendo, P. A., Cipriano, F., ... & Moises, M. A. (2015). Street floods in Metro Manila and possible solutions. 9 9. Accessed 8 17, 2020.

  11. Bañares, E. N., Narisma, G. T. T., Simpas, J. B. B., Cruz, F. T., Lorenzo, G. R. H., Cambaliza, M. O. L., & Coronel, R. C. (2021). Seasonal and diurnal variations of observed convective rain events in Metro Manila. Philippines. Atmospheric Research, 258, 105646.

    Article  Google Scholar 

  12. Dado, J. M., & Narisma, G. T. (2019). The effect of urban expansion in metro Manila on the southwest monsoon rainfall. Asia-Pacific Journal of Atmospheric Sciences, 58, 1–12.

    Article  Google Scholar 

  13. Oliveros, J. M., Vallar, E. A., & Galvez, M. C. D. (2019). Investigating the effect of urbanization on weather using the weather research and forecasting (WRF) model: A case of Metro Manila Philippines. Environments, 6(2), 10.

    Article  Google Scholar 

  14. Bagtasa, G. (2019). Enhancement of summer monsoon rainfall by tropical cyclones in northwestern Philippines. Journal of the Meteorological Society of Japan Ser II, 97(5), 967–976.

    Article  Google Scholar 

  15. Morin, V. M., Ahmad, M. M., & Warnitchai, P. (2016). Vulnerability to typhoon hazards in the coastal informal settlements of Metro Manila, the Philippines. Disasters, 40(4), 693–719.

    Article  Google Scholar 

  16. Santos, G. D. C. (2021). 2020 tropical cyclones in the Philippines: A review. Tropical Cyclone Research and Review, 10(3), 191–199.

    Article  Google Scholar 

  17. Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.

    Article  CAS  Google Scholar 

  18. Kalnay, E., Kanamitsu, M., & Baker, W. E. (1990). Global numerical weather prediction at the National Meteorological Center. Bulletin of the American Meteorological Society, 71(10), 1410–1428.

    Article  Google Scholar 

  19. Kimura, R. (2002). Numerical weather prediction. Journal of Wind Engineering and Industrial Aerodynamics, 90(12–15), 1403–1414.

    Article  Google Scholar 

  20. Coiffier, J. (2011). Fundamentals of numerical weather prediction. Cambridge University Press.

    Book  Google Scholar 

  21. Zhao, Q., Cook, J., Xu, Q., & Harasti, P. R. (2006). Using radar wind observations to improve mesoscale numerical weather prediction. Weather and forecasting, 21(4), 502–522.

    Article  Google Scholar 

  22. Lee, J. W., Min, K. H., Lee, Y. H., & Lee, G. (2020). X-Net-Based radar data assimilation study over the Seoul metropolitan area. Remote Sensing, 12(5), 893.

    Article  Google Scholar 

  23. Bao, J. W., & Errico, R. M. (1997). An adjoint examination of a nudging method for data assimilation. Monthly Weather Review, 125(6), 1355–1373.

    Article  Google Scholar 

  24. Zou, X., & Kuo, Y. H. (1996). Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Monthly Weather Review, 124(12), 2859–2882.

    Article  Google Scholar 

  25. Huo, Z., Liu, Y., Wei, M., Shi, Y., Fang, C., Shu, Z., & Li, Y. (2021). Hydrometeor and latent heat nudging for radar reflectivity assimilation: Response to the model states and uncertainties. Remote Sensing, 13(19), 3821.

    Article  Google Scholar 

  26. Snyder, C., & Zhang, F. (2003). Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Monthly Weather Review, 131(8), 1663–1677.

    Article  Google Scholar 

  27. Ban, J., Liu, Z., Zhang, X., Huang, X. Y., & Wang, H. (2017). Precipitation data assimilation in WRFDA 4D-Var: Implementation and application to convection-permitting forecasts over United States. Tellus A: Dynamic Meteorology and Oceanography, 69(1), 1368310.

    Article  Google Scholar 

  28. Sun, J. (2005). Initialization and numerical forecasting of a supercell storm observed during STEPS. Monthly Weather Review, 133(4), 793–813.

    Article  Google Scholar 

  29. Sugimoto, S., Crook, N. A., Sun, J., Xiao, Q., & Barker, D. M. (2009). An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Monthly Weather Review, 137(11), 4011–4029.

    Article  Google Scholar 

  30. Hou, T., Kong, F., Chen, X., & Lei, H. (2013). Impact of 3DVAR data assimilation on the prediction of heavy rainfall over Southern China. Advances in Meteorology. https://doi.org/10.1155/2013/129642

    Article  Google Scholar 

  31. Lagasio, M., Silvestro, F., Campo, L., & Parodi, A. (2019). Predictive capability of a high-resolution hydrometeorological forecasting framework coupling WRF cycling 3dvar and Continuum. Journal of Hydrometeorology, 20(7), 1307–1337.

    Article  Google Scholar 

  32. Xiao, Q., Kuo, Y. H., Sun, J., Lee, W. C., Barker, D. M., & Lim, E. (2007). An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. Journal of Applied Meteorology and Climatology, 46(1), 14–22.

    Article  Google Scholar 

  33. Xiao, Q., & Sun, J. (2007). Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Monthly Weather Review, 135(10), 3381–3404.

    Article  Google Scholar 

  34. Combinido, J. S., & Perez, G. J. (2014). Impact of Tagaytay Doppler radar assimilation on WRF rainfall prediction. Proceedings of the Samahang Pisika ng Pilipinas 32, SPP2014–5B-06

  35. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR Technical Note, 475, 113. https://doi.org/10.5065/D68S4MVH

    Article  Google Scholar 

  36. Miro, G., Simora, M.B., Miguel, H.M.S., Magtibay, X.A.B., and Taguinod, L.J.R. (2023a): Impact of assimilating radar data on forecasting enhanced southwest monsoon rainfall over the Philippines. 7th Taiwan-Philippines Earth Sciences International Conference, 24. Available online: http://www.edsrc.ncku.edu.tw/tpesic/Abstract.pdf

  37. Miro, G., Simora, M.B., Miguel, H.M.S., Magtibay, X.A.B., and Taguinod, L.J.R. (2023b): Effect of assimilating conventional observations and radio occultation data on forecasting enhanced southwest monsoon over the Philippines. Proceedings of the Philippine Meteorological Society, 6, 17. Available online: https://philmetsoc.com/PMS/Uploaded_Files/PMS_Proceedings_Vol6.pdf

  38. Bagtasa, G. (2022). Assessment of tropical cyclone rainfall from GSMaP and GPM products and their application to analog forecasting in the Philippines. Atmosphere, 13(9), 1398.

    Article  Google Scholar 

  39. Helmus, J. J., & Collis, S. M. (2016). The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. Journal of open research software, 4(1), 25.

    Article  Google Scholar 

  40. Lorenc, A. C. (1997). Development of an operational variational assimilation scheme. J. Met Soc Japan, 75, 339–346.

    Article  Google Scholar 

  41. Wang, H., Sun, J., Fan, S., & Huang, X. Y. (2013). Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. Journal of Applied Meteorology and Climatology, 52(4), 889–902.

    Article  Google Scholar 

  42. Heistermann, M., Crisologo, I., Abon, C. C., Racoma, B. A., Jacobi, S., Servando, N. T., David, C. P. C., & Bronstert, A. (2013). Brief communication" Using the new Philippine radar network to reconstruct the Habagat of August 2012 monsoon event around Metropolitan Manila". Natural Hazards and Earth System Sciences, 13(3), 653–657.

    Article  Google Scholar 

  43. Bagtasa, G. (2021). Analog forecasting of tropical cyclone rainfall in the Philippines. Weather and Climate Extremes, 32, 100323.

    Article  Google Scholar 

  44. Lagmay, A. M. F., Bagtasa, G., Crisologo, I. A., Racoma, B. A. B., & David, C. P. C. (2015). Volcanoes magnify Metro Manila’s southwest monsoon rains and lethal floods. Frontiers in Earth Science, 2, 36.

    Article  Google Scholar 

  45. Aksoy, A., Dowell, D. C., & Snyder, C. (2010). A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations Part II: Short-range ensemble forecasts. Monthly Weather Review, 138(4), 1273–1292.

    Article  Google Scholar 

  46. Mandapaka, P. V., Germann, U., Panziera, L., & Hering, A. (2012). Can Lagrangian extrapolation of radar fields be used for precipitation nowcasting over complex Alpine orography? Weather and Forecasting, 27(1), 28–49.

    Article  Google Scholar 

  47. Fabry, F., & Meunier, V. (2020). Why are radar data so difficult to assimilate skillfully? Monthly Weather Review, 148(7), 2819–2836.

    Article  Google Scholar 

  48. Li, X., & Mecikalski, J. R. (2010). Assimilation of the dual‐polarization Doppler radar data for a convective storm with a warm‐rain radar forward operator. Journal of Geophysical Research Atmospheres115(D16).

Download references

Acknowledgements

The authors would like to thank DOST-ASTHRDP for the Masters in Meteorology scholarship grant for the first author. We also thank Dr. Mayzonee Ligaray, Dr. Olive Cabrera, Dr. Flaviana Hilario, Dr. Prisco Nilo, and the anonymous reviewers for their input in improving this study. Finally, this study is partly supported by DOST-PCIEERD under the project 1211131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerry Bagtasa.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4235 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depasucat, C.H.T., Bagtasa, G. Assimilating the Subic radar data in the WRF model for tropical cyclone-enhanced heavy monsoon rainfall prediction in Metro Manila. Spat. Inf. Res. (2024). https://doi.org/10.1007/s41324-024-00590-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41324-024-00590-0

Keywords

Navigation