Skip to main content

Evaluating the contribution of urban ecosystem services in regulating thermal comfort

Abstract

The study focuses on spatio-temporal dynamics of urban ecosystem services (UES) and their contribution in maintaining thermal comfort in Bhubaneswar city, India. An extensive increase in UES demand (grey) patches (187.95%) was observed during 1992–2016 in contrast to significant decline (47.94%) in UES supply (blue–green) patches, primarily in the northern and south–western directions. Also, a drastic rise in area under thermally highly uncomfortable zone (35–40 °C) from 0.005 to 56.68 km2 and a decrease in area of thermally comfortable zone (≤ 26 °C) from 0.46 km2 to zero during 1992–2016 exhibiting deteriorating natural urban living condition. Although, the land surface temperature (LST) was remained higher in urban areas, the peri-urban and neighbouring rural areas (27.31–33.98 °C) of Bhubaneswar city recorded a high increase in mean LST as compared to the urban areas (31.19–34.69 °C). In both the cases, UHI intensities were less as compared to other growing cities of India. The MODIS based time series analysis depicted similar trends with minor increase in LST (30.55–30.76 °C) during 2000–16. The study proves the intrinsic linkages of UES with thermal comfort and necessitates to adopt sustainable measures to make the city green and habitable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. UN, (1997). Urban and Rural Areas 1996. UN, New York United Nations publications (ST/ESA/SER.a/166), Sales No. E97.XIII.3.

  2. United Nations, Department of Economic and Social Affairs, Population Division, (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.

  3. Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem by cities appropriation. Ambio, 26(3), 167–172.

    Google Scholar 

  4. Haughton, G., & Hunter, C. (1994). Sustainable cities. London: Jessica Kingsley.

    Google Scholar 

  5. Moll, G., Petit, J., (1994). The urban ecosystem: putting nature back in the picture. Urban Forests Oct/Nov, 8–15.

  6. Rebele, F. (1994). Urban ecology and special features of urban ecosystems. Global Ecology Biogeography Letter, 4, 173–187.

    Article  Google Scholar 

  7. Costanza, R. J., Groot, R. A., de Farberll, R., Grassot, S., Hannon, M., Belt, B., et al. (1997). Value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  8. Fisher, B., Turner, K. R., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological Economics, 68(3), 643–653.

    Article  Google Scholar 

  9. Barthel, S., Folke, C., & Colding, J. (2010). Social—Ecological memory in urban gardens—Retaining the capacity for management of ecosystem services. Global Environmental Change, 20(2), 255–265.

    Article  Google Scholar 

  10. Ptaszycka, A. (1950). Cities green areas (in Polish). Przestrzenie zielone w miastach. Warsaw: Ludowa Spółdzielnia Wydawnicza.

    Google Scholar 

  11. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29, 293–301.

    Article  Google Scholar 

  12. Ahern, J., Cilliers, S., & Niemelä, J. (2014). The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landscape and Urban Planning, 125, 254–259. https://doi.org/10.1016/j.landurbplan.2014.01.020.

    Article  Google Scholar 

  13. Makse, H. A., Havlin, S., & Stanley, H. E. (1995). Modelling urban growth patterns. Nature, 377, 608–612.

    Article  Google Scholar 

  14. Katz, B., & Bradley, J. (1999). Divided we sprawl. Atlantic Monthly, 284(6), 26–42.

    Google Scholar 

  15. Garreau, J. (1991). Edge City: Life on the New Frontier. New York: Doubleday.

    Google Scholar 

  16. Bradley, G. A. (Ed.). (1995). Urban forest landscapes: integrating multidisciplinary perspectives. Seattle: University of Washington Press.

    Google Scholar 

  17. Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., et al. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178.

    Article  Google Scholar 

  18. Dobbs, C., Escobedo, F. J., & Zipperer, W. C. (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning, 99(3–4), 196–206. https://doi.org/10.1016/j.landurbplan.2010.11.004.

    Article  Google Scholar 

  19. Brown, T. C., Bergstrom, J. C., & Loomis, J. B. (2007). Defining, valuing, and providing ecosystem goods and services. Natural Resources Journal, 47, 329e376.

    Google Scholar 

  20. Tallis, H., & Polasky, S. (2009). Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Annals of the New York Academy of Science, 283, 265–283. https://doi.org/10.1111/j.1749-6632.2009.04152.x.

    Article  Google Scholar 

  21. Kroeger, T., & Casey, F. (2007). An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecological Economics, 4, 321–332.

    Article  Google Scholar 

  22. Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G., & Gaston, K. J. (2007). Urban form, biodiversity potential and ecosystem services. Landscape and Urban Planning, 83(4), 308–317. https://doi.org/10.1016/j.landurbplan.2007.05.003.

    Article  Google Scholar 

  23. Lal, K., Kumar, D., & Kumar, A. (2017). The Egyptian Journal of Remote Sensing and Space Sciences Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 20, 91–102. https://doi.org/10.1016/j.ejrs.2017.01.003.

    Article  Google Scholar 

  24. Kumar, A., Pandey, A. C., Pandey, S., & Srivastava, P. K. (2020). Evaluating long term variability in precipitation and temperature in Eastern Plateau Region, India and its impact on Urban environment. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00742-w.

    Article  Google Scholar 

  25. Mayer, H. (1987). Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, 49, 43–49.

    Article  Google Scholar 

  26. Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces: understanding the human parameter. Solar Energy, 70(3), 227–235.

    Article  Google Scholar 

  27. Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. https://doi.org/10.1016/j.rse.2009.10.008.

    Article  Google Scholar 

  28. Manley, G. (1958). On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84, 70–72.

    Article  Google Scholar 

  29. Census of India. (2011). Primary census abstract. New Delhi: Office of the Registrar General.

    Google Scholar 

  30. United Nations, Department of Economic and Social Affairs, Population Division (2018). World Urbanization Prospects: The 2018 Revision, Online Edition.

  31. Keuchel, J., Naumann, S., Heiler, M., & Siegmund, A. (2003). Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, 86, 530–541.

    Article  Google Scholar 

  32. Camps-Valls, G., Gómez-Chova, L., Calpe-Maravilla, J., Martín-Guerrero, J. D., Soria-Olivas, E., Alonso-Chordá, L., et al. (2004). Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1530–1542. https://doi.org/10.1109/TGRS.2004.827262.

    Article  Google Scholar 

  33. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790. https://doi.org/10.1109/TGRS.2004.831865.

    Article  Google Scholar 

  34. Fauvel, M., Member, S., Chanussot, J., & Member, S. (2006). Decision Fusion for the Classification of Urban. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/TGRS.2006.876708.

    Article  Google Scholar 

  35. Marinescu, I., & Woolner, J. (2008). Criteria for the thermal comfort analysis within urban ecosystems. Annals of The University of Craiova—Series Geography, 11, 19–22.

    Google Scholar 

  36. Wenq, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, southern China. International Journal of Remote Sensing, 22(10), 1999–2014.

    Google Scholar 

  37. Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM + and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358–368. https://doi.org/10.1016/j.solener.2006.06.014.

    Article  Google Scholar 

  38. Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008.

    Article  Google Scholar 

  39. Lemus-canovas, M., Martin-vide, J., Moreno-garcia, M. C., & Lopez-bustins, J. A. (2020). Science of the total environment estimating Barcelona’s metropolitan daytime hot and cold poles using landsat-8 land surface temperature. Science of the Total Environment, 699, 134307. https://doi.org/10.1016/j.scitotenv.2019.134307.

    Article  Google Scholar 

  40. Parvez, I. M., Aina, Y. A., & Balogun, A. (2019). The influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city. Geocarto International. https://doi.org/10.1080/10106049.2019.1622598.

    Article  Google Scholar 

  41. Sultana, S., & Satyanarayana, A. N. V. (2020). Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustainable Cities and Society, 52, 101846. https://doi.org/10.1016/j.scs.2019.101846.

    Article  Google Scholar 

  42. Wang, Z., Fan, C., & Zhao, Q. (2020). A geographically weighted regression approach to understanding urbanization impacts on urban warming and cooling: A case study of Las Vegas. Remote Sens., 12, 222. https://doi.org/10.3390/rs12020222.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the anonymous reviewers and editors for their valuable comments, which have brought substantial changes in the manuscript. The authors acknowledge the United States Geological Survey for making available the LANDSAT freely and Google Earth Engine for facilitating the access to the archive of publicly available satellite imagery and processing modules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, S., Kumar, A. Evaluating the contribution of urban ecosystem services in regulating thermal comfort. Spat. Inf. Res. 29, 71–82 (2021). https://doi.org/10.1007/s41324-020-00336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00336-8

Keywords