Skip to main content
Log in

Evaluation of machine learning algorithms to Sentinel SAR data

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The present study uses multi-temporal Sentinel-1 SAR dataset for classification of Saharanpur area in the Indo-Gangetic plains with December, January and February month datasets of VV and VV/VH polarization. Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT) and Artificial Neural Network (ANN) algorithms with six different band combinations was used to classify the data in 6 classes. The highest accuracy was achieved with SVM for December–January combination with Overall Accuracy of 74.36% and a kappa coefficient of 0.6905. SVM algorithm performed the best followed by DT, ANN and RF. It was observed that the accuracy of classification increased with multi-temporal datasets. In SVM and RF the accuracy increased by almost 8% from single to dual date, but no increase in accuracy was observed irrespective of taking three dates. For DT and ANN, the accuracy from single to dual date increased by > 10% and by approximately 3% (Marginal) for three dates. The single date ANN achieved very poor results but with an increase in the datasets, good accuracy was attained. This study, therefore, reveals that with single and dual datasets, SVM and RF performs well and with multi-temporal datasets, DT and ANN can also achieve good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). Land use and land cover classification system for use with remote sensor data (Vol. 964). Washington DC: U.S. Geological Survey, Professional Paper.

    Google Scholar 

  2. Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. (2017). Fusion of Sentinel-1a and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps,13(2), 718–726. https://doi.org/10.1080/17445647.2017.1372316.

    Article  Google Scholar 

  3. Saatchi, S. S., Soares, J. V., & Alves, D. S. (1997). Mapping deforestation and land use in Amazon rainforest by using SIR-C imagery. Remote Sensing of Environment,59(2), 191–202. https://doi.org/10.1016/S0034-4257(96)00153-8.

    Article  Google Scholar 

  4. Roberts, D. A., Keller, M., & Soares, J. V. (2003). Studies of land-cover, land-use, and biophysical properties of vegetation in the large scale biosphere atmosphere experiment in Amazônia. Remote Sensing of Environment,87(4), 377–388. https://doi.org/10.1016/j.rse.2003.08.012.

    Article  Google Scholar 

  5. Thenkabail, P. S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment,95(3), 317–341. https://doi.org/10.1016/j.rse.2004.12.018.

    Article  Google Scholar 

  6. Pierce, L., Ulaby, F. T., Sarabandi, K., & Dobson, M. C. (1994). Knowledge-based classification of polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing,32(5), 1081–1086. https://doi.org/10.1109/36.312896.

    Article  Google Scholar 

  7. Lee, J. Sen, Grunes, M. R., & Pottier, E. (2001). Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Transactions on Geoscience and Remote Sensing,39(11), 2343–2351. https://doi.org/10.1109/36.964970.

    Article  Google Scholar 

  8. da Costa Freitas, C., de Souza Soler, L., SantAnna, S. J. S., Dutra, L. V., dos Santos, J. R., Mura, J. C., et al. (2008). Land use and land cover mapping in the Brazilian Amazon using polarimetric airborne P-band SAR data. IEEE Transactions on Geoscience and Remote Sensing,46(10), 2956–2970. https://doi.org/10.1109/tgrs.2008.2000630.

    Article  Google Scholar 

  9. Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave remote sensing: Active and passive. Volume I: microwave remote sensing fundamentals and radiometry (Vol. 1, p. 456). Reading: Addison-Wesley.

    Google Scholar 

  10. Li, X., & Yeh, A. G.-O. (2004). Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landscape and Urban Planning,69(4), 335–354. https://doi.org/10.1016/j.landurbplan.2003.10.033.

    Article  Google Scholar 

  11. Du, L., & Lee, J. S. (1996). Fuzzy classification of earth terrain covers using complex polarimetric sar data. International Journal of Remote Sensing,17(4), 809–826. https://doi.org/10.1080/01431169608949047.

    Article  Google Scholar 

  12. Abdikan, S., Sanli, F. B., Ustuner, M., & Calò, F. (2016). Land cover mapping using Sentinel-1 SAR data. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,XLI-B7(July), 757–761. https://doi.org/10.5194/isprsarchives-xli-b7-757-2016.

    Article  Google Scholar 

  13. Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment,86(4), 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9.

    Article  Google Scholar 

  14. Huang, C., Davis, L. S., Townshed, J. R. G., Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing,23(4), 725–749. https://doi.org/10.1080/01431160110040323.

    Article  Google Scholar 

  15. Nitze, I., Schulthess, U., & Asche, H. (2012). Comparison of machine learning algorithms random forest, artificial neuronal network and support vector machine to maximum likelihood for supervised crop type classification. In Proceedings of the 4th conference on geographic object-based image analysisGEOBIA 2012 (pp. 35–40).

  16. Niu, X., & Ban, Y. F. (2013). Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International Journal of Remote Sensing,34(1), 1–26. https://doi.org/10.1080/01431161.2012.700133.

    Article  Google Scholar 

  17. Qi, Z., Yeh, A. G. O., Li, X., & Lin, Z. (2012). A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sensing of Environment,118, 21–39. https://doi.org/10.1016/j.rse.2011.11.001.

    Article  Google Scholar 

  18. Waske, B., Menz, G., & Benediktsson, J. A. (2007). Fusion of support vector machines for classifying SAR and multispectral imagery from agricultural areas. In International geoscience and remote sensing symposium (IGARSS) (pp. 4842–4845). https://doi.org/10.1109/igarss.2007.4423945.

  19. climate-data.org. (2018). Saharanpur climate: Average temperatures, weather by month, Saharanpur weather averages—Climate-Data.org. Retrieved September 5, 2018, from https://en.climate-data.org/location/5378/.

  20. ESA. (2018). Copernicus Open Access Hub. Retrieved June 5, 2018, from https://scihub.copernicus.eu/dhus/#/home.

  21. Lopes, A., Nezry, E., Touzi, R., & Laur, H. (1990). Maximum a posteriori speckle filtering and first order texture models in SAR images. In Digestinternational geoscience and remote sensing symposium (IGARSS) (Vol. 3, pp. 2409–2412).

  22. Rosich, B., & Meadows, P. (2004). Absolute calibration of ASAR level 1 products generated with PF-ASAR—browse document library—earth online—ESA. European Space Agency.

  23. Small, D., & Schubert, A. (2008). Guide to ASAR Geocoding. geo.uzh.ch.

  24. ESA. (n.d.). ESA SNAP. Retrieved August 24, 2019, from https://step.esa.int/main/download/.

  25. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing,66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001.

    Article  Google Scholar 

  26. Breiman, L. (2001). Random Forests. Machine Learning,45(1), 5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  27. Swain, P. H., & Hauska, H. (1977). The decision tree classifier: Design and potential. IEEE Transactions on Geoscience Electronics,15(3), 142–147. https://doi.org/10.1109/TGE.1977.6498972.

    Article  Google Scholar 

  28. Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine,4, 4–22.

    Article  Google Scholar 

  29. Koehrsen, W. (2017). Deep neural network classifier—William Koehrsen—medium. Retrieved September 5, 2018, from https://medium.com/@williamkoehrsen/deep-neural-network-classifier-32c12ff46b6c.

  30. Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment,62(1), 77–89. https://doi.org/10.1016/S0034-4257(97)00083-7.

    Article  Google Scholar 

  31. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement,20(1), 37–46. https://doi.org/10.1177/001316446002000104.

    Article  Google Scholar 

  32. Ban, Y. (2003). Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Canadian Journal of Remote Sensing,29(4), 518–526. https://doi.org/10.5589/m03-014.

    Article  Google Scholar 

  33. Ban, Y., & Wu, Q. (2005). RADARSAT SAR data for landuse/land-cover classification in the rural–urban fringe of the greater Toronto area. In Proceedings of 8th AGILE conference on geographic information science, (2000), pp. 26–28.

  34. Chen, Z., & Wang, J. (2010). Land use and land cover change detection using satellite remote sensing techniques in the mountainous Three Gorges Area, China. International Journal of Remote Sensing,31(6), 1519–1542. https://doi.org/10.1080/01431160903475381.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Prakash Chauhan, Director, IIRS and Dr. S. K. Srivastav, Dean, IIRS for their constant encouragement and guidance during the study. Authors are also thankful to Dr. D. Mitra, Head MASD, IIRS, Dr. Suresh Kumar, Head ASD, IIRS and Ms. Charu Singh, Scientist-E MASD, IIRS for their support in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Navale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navale, A., Haldar, D. Evaluation of machine learning algorithms to Sentinel SAR data. Spat. Inf. Res. 28, 345–355 (2020). https://doi.org/10.1007/s41324-019-00296-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00296-8

Keywords

Navigation