Skip to main content

A TOPSIS approach-based morphometric analysis for sub-watersheds prioritization of high Oum Er-Rbia basin, Morocco

Abstract

The study area covers 1871 km2 is located in the upstream of Oum Er-Rbia river basin, between latitudes 33° and 34° North, and longitudes 4°30′ and 5°20′ East. Watersheds prioritization based on morphometric parameters through the analysis of linear, areal and relief aspects is necessary in order to develop a sustainable watersheds management plan. The High Oum Er-Rbia basin has been subdivided into 17 sub-watersheds using remote sensing data (Aster-DEM) and Geographic Information System. For prioritization of sub-watersheds. The Multi-Criteria Analysis through the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), were applied to determine the relative weights of various parameters. Linear parameters; such as bifurcation ratio (Rb), drainage density (Dd), stream frequency (Fs), drainage texture (Dt), and shape parameters such as form factor (Rf), shape basin (Bs), elongation ratio (Re), compactness constant (Cc), and circularity ratio (Rc). The present study is an attempt to use TOPSIS approach based morphometric indices for prioritization of watersheds for water and soil resources conservation and management. The results show that sub-watersheds 2 and 6 have been ranked 1 and 2 assigned to highest closeness (C +i ) to ideal solution with 0.6838 and 0.6788 respectively. These sub-watersheds must be given the highest priority for soil and water conservation measures, to insure future sustainable agriculture, water quality and to prevent silting of Ahmed El-Hansali Dam.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Obi Reddy, G. P., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in basaltic terrain, Central India-a Remote Sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1–16.

    Article  Google Scholar 

  2. Strahler, A. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. Chow (Ed.), Handbook of applied hydrology (pp. 439–476). New York: McGraw Hill.

    Google Scholar 

  3. Agarwal, C. S. (1998). Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P. Journal of the Indian Society of Remote Sensing, 26(4), 169–175.

    Article  Google Scholar 

  4. Clarke, J. I. (1996). Morphometry from maps: Essay in geomorphology (pp. 235–274). New York: Elsevier Publication Co.

    Google Scholar 

  5. Horton, R. E. (1932). Drainage basin characteristics. Transactions of the American Geophysical Union, 13, 348–352.

    Article  Google Scholar 

  6. Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydro-physical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275.

    Article  Google Scholar 

  7. Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Project NR: 389-402, Technical Report 3, Columbia University, Department of Geology, ONR, New York.

  8. Rudraiah, M., Govindaiah, S., & Srinivas, V. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. Journal of the Indian Society of Remote Sensing, 36, 351–360.

    Article  Google Scholar 

  9. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38, 913–920.

    Article  Google Scholar 

  10. Aouragh, M. H., & Essahlaoui, A. (2014). Morphometric analysis of a Guigou sub-watershed, Sebou Basin, Middle Atlas, Morocco using GIS based ASTER (DEM) image. International Journal of Innovative Research in Science, Engineering and Technology, 3(4), 11503–11512.

    Google Scholar 

  11. Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritization of sub-watersheds based on morphometric analysis of drainage basin, District Midnapore, West Bengal. Journal of the Indian Society of Remote Sensing, 27, 155–166.

    Article  Google Scholar 

  12. Christopher, O. (2010). Hydrological analysis of Onitsha north east drainage basin using geoinformatic techniques. World Applied Sciences Journal, 11(10), 1297–1302.

    Google Scholar 

  13. Krishnamurthy, J., & Srinivas, G. (1995). Role of geological and geo-morphological factors in groundwater exploration a study using IRS LISS data. International Journal of Remote Sensing, 16, 2595–2618.

    Article  Google Scholar 

  14. Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 1, 69–76.

    Article  Google Scholar 

  15. Nautiyal, M. D. (1994). Morphometric analysis of a drainage basin using aerial photographs: A case study of Khairkuli Basin, District Dehradun, UP. Journal of the Indian Society of Remote Sensing, 22(4), 251–261.

    Article  Google Scholar 

  16. Rekha, B. V. B. (2011). Morphometric analysis and micro-watershed prioritization of Peruvanthanam Subwatershed, the Manimala River Basin, Kerala, South India. Environmental Research, Engineering and Management, 3(57), 6–14.

    Google Scholar 

  17. Sreedevi, P. D., Owais, S., & Khan, H. H. (2009). Morphometric analysis of a watershed of South India using SRTM data and GIS. Journal of the Geological Society of India. https://doi.org/10.1007/s12594-009-0038-4.

    Google Scholar 

  18. Javed, A., Khanday, Y. M., & Rais, S. (2011). Watershed prioritization using morphometric and land use/land cover parameters: a remote sensing and GIS based approach. Journal Geological Society of India, 78(1), 63–75.

    Article  Google Scholar 

  19. Martin, J. (1981). Le Moyen Atlas central: étude géomorphologique, Rabat, Notes et mémoires du service géologique du Maroc, n°258bis.

  20. El Jihad, M. I. (2010). Les difficultés de gestion des ressources « naturelles » et de développement rural dans un milieu anthropisé: l’expérience du Projet Oued Srou (Maroc central). Norois, 3(216), 25–45.

    Article  Google Scholar 

  21. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making methods and applications. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-48318-9.

    Book  Google Scholar 

  22. Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9.

    Article  Google Scholar 

  23. Cheng, S., Chan, C. W., & Huang, G. H. (2003). An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Engineering Applications of Artificial Intelligence, 16, 543–554.

    Article  Google Scholar 

  24. Simonovic, S. P., & Verma, R. (2008). A new methodology for water resources multi–criteria decision making under uncertainty. Physics and Chemistry of the Earth, 33, 322–329.

    Article  Google Scholar 

  25. Kim, G., Park, C. S., & Yoon, K. P. (1997). Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. International Journal of Production Economics, 50(1), 23–33.

    Article  Google Scholar 

  26. Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47, 412–420.

    Article  Google Scholar 

  27. Pakhmode, V., Kulkarni, H., & Deolankar, S. B. (2003). Hydrological drainage analysis in watershed programme planning: A case study from the Deccan basalt, India. Hydrogeology Journal, 11, 595–604.

    Article  Google Scholar 

  28. Patel, D. P., Gajjar, C. A., & Srivastava, P. K. (2012). Prioritization of Malesari mini-watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences, 69, 2643–2656. https://doi.org/10.1007/S1266-5-012-2086-0.

    Article  Google Scholar 

  29. Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in basaltic terrain, Central India–a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6, 1–16.

    Article  Google Scholar 

  30. Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597–646.

    Article  Google Scholar 

  31. Smith, K. G. (1950). Standards for grading textures of erosional topography. American Journal of Science, 248, 655–668.

    Article  Google Scholar 

  32. Singh, S., & Singh, M. C. (1997). Morphometric analysis of Kanhar river basin. National Geographical Journal of lndia, 1(43), 31–43.

    Google Scholar 

  33. Gravelius, H. (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde. In Compendium of Hydrology, Rivers. Goschen, Berlin (Vol. I, pp. 265–278) (in German).

  34. Altaf, F., Meraj, G., & Romshoo, S. (2013). Morphometric analysis to infer hydrological behavior of Lidder Watershed, Western Himalaya, India. Geography Journal, 13, 1–14. https://doi.org/10.1155/2013/178021.

    Article  Google Scholar 

  35. Tuker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage density, and landscape morphology. Water Resources Research, 34, 2751–2764. https://doi.org/10.1029/98WR01474.

    Article  Google Scholar 

  36. Manu, M. S., & Anirudhan, S. (2008). Drainage characteristics of Achankovil River Basin, Kerala. Journal of Geological Society of India, 71, 841–850.

    Google Scholar 

  37. Nookaratnam, K., Srivastava, Y. K., Venkateswarao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis-remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1), 25–38.

    Article  Google Scholar 

  38. Javed, A., Khanday, Y. M., & Ahmed, R. (2009). Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 37, 261–274.

    Article  Google Scholar 

  39. Yjjou, M., Bouabid, R., El Hmaidi, A., Essahlaoui, A., & El Abassi, M. (2014). Modélisation de l’érosion hydrique via les SIG et l’équation universelle des pertes en sol au niveau du bassin versant de l’Oum Er-Rbia. The International Journal of Engineering and Science (IJES), 3(8). ISSN (e): 2319-1813.

Download references

Acknowledgements

Thanks to anonymous reviewers and editorial comment by Jung-Sup Um ‘Editor-in-Chief’ for their valuable comments, this helped us to improve the quality of the manuscript. In addition, we thank The Ministry of Economy, Trade, and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA) for providing the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to My Hachem Aouragh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aouragh, M.H., Essahlaoui, A. A TOPSIS approach-based morphometric analysis for sub-watersheds prioritization of high Oum Er-Rbia basin, Morocco. Spat. Inf. Res. 26, 187–202 (2018). https://doi.org/10.1007/s41324-018-0169-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0169-z

Keywords

  • Prioritization of sub-watersheds
  • TOPSIS approach
  • Morphometric analysis
  • Remote sensing
  • GIS
  • High Oum Er-Rbia basin (Morocco)