Skip to main content

A hybrid approach for monitoring future thermal environment in tropical areas

Abstract

The manifestation of urban heat, due to changes in the surface physical components, is a well recognized example of man’s alteration of the natural environment. In this study, an attempt was made to project the future urban thermal changes by integrating a statistical approach with remote sensing techniques. Landsat observed TM, ETM+, and TIRS/OLI data for the periods 1986, 2000, and 2014 were used to examine the spatio-temporal changes in land surface temperature associated with urbanization process in the tropical City of Akure, Nigeria. Quantitative analysis on the past and future (2028 and 2042) land surface temperature (LST) impacts of urban land cover change was carried out using a hybrid Cellular Automata/Markov (CA_Markov) model and a step-wise multiple regression model. The result of the projected LST ranged from 19.79 to 40.97 °C in 2028, and from 20.68 to 44.15 °C for 2042. It was found that there was no significant increase in the hybrid CA_Markov projected LST in the City centres when compared with earlier years. However, the sub-urban and rural areas that are undergoing rapid urbanisation processes, as confirmed in the literature, have been observed to transit from a low and medium to high thermal zones in 2028 and 2042.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26.

    Article  Google Scholar 

  2. UNEP United Nations Environment Programme. (2002). Global Environment Outlook 3. http://www.unep.org/GEO/geo3/index.htm, 22/05/2013.

  3. Ichimura, M. (2003). Urbanization, urban environment and land use: Challenges and opportunities. Asia-Pacific Forum for Environment and Development, Expert Meeting, 23 January 2003, Guilin, People’s Republic of China. http://www.kas.de/upload/dokumente/megacities/urbanization_urban_environment_and_land_use.pdf, 06/03/2014.

  4. Chudnovsky, A., Ben-Dor, E., & Saaroni, H. (2004). Diurnal thermal behaviour of selected urban objects using remote sensing measurements. Energy and Buildings, 36, 1063–1074. https://doi.org/10.1016/j.enbuild.2004.01.052.

    Article  Google Scholar 

  5. Ishola, K. A., Okogbue, E. C., & Adeyeri, O. E. (2016). A quantitative assessment of surface urban heat islands using satellite multitemporal data over Abeokuta, Nigeria. International Journal of Atmospheric Sciences. https://doi.org/10.1155/2016/3170789.

    Google Scholar 

  6. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climate. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  7. Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land use classification. Remote Sensing of Environment, 102, 146–160.

    Article  Google Scholar 

  8. Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40, 1743–1758.

    Article  Google Scholar 

  9. Ishola, K. A., Okogbue, E. C., & Adeyeri, O. E. (2016). Dynamics of surface urban biophysical compositions and its impact on land surface thermal field. Modeling Earth Systems and Environment, 2(208), 1–20.

    Google Scholar 

  10. Deosthali, V. (2000). Impact of rapid urban growth on heat and moisture islands in Pune City, India. Atmospheric Environment, 34, 2745–2754.

    Article  Google Scholar 

  11. Balogun, I. A., Balogun, A. A., & Adeyewa, Z. D. (2012). Observed urban heat island characteristics in Akure, Nigeria. African Journal of Environmental Science and Technology, 6(1), 1–8.

    Article  Google Scholar 

  12. Balogun, I. A., & Balogun, A. A. (2014). Urban Heat Island and bioclimatological conditions in a hot humid tropical city: The example of Akure, Nigeria. DIE ERDE, 145(1–2), 3–15.

    Google Scholar 

  13. Ojeh, V. N., Balogun, A. A., & Okhimamhe, A. A. (2016). Urban–rural temperature differences in Lagos. Climate, 4, 29. https://doi.org/10.3390/cli4020029.

    Article  Google Scholar 

  14. Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 85, 282–289.

    Article  Google Scholar 

  15. Adeyeri, O. E., Akinsanola, A. A., & Ishola, K. A. (2017). Investigating surface urban heat island characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sensing Applications: Society and Environment, 7, 57–68.

    Article  Google Scholar 

  16. Fabrizi, R., Bonafoni, S., & Biondi, R. (2010). Satellite and ground-based sensors for the urban heat island analysis in the City of Rome. Remote Sensing, 2, 1400–1415.

    Article  Google Scholar 

  17. Xiong, Y., Huang, S., Chen, F., Ye, H., Wang, C., & Zhu, C. (2012). The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing, 4, 2033–2056.

    Article  Google Scholar 

  18. Lowry, W. P. (1977). Empirical estimation of urban effects on climate: A problem analysis. Journal of Applied Meteorology, 16, 129–135.

    Article  Google Scholar 

  19. Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and Aster data: A case study in Hong Kong. Remote Sensing, 3(7), 1535–1552.

    Article  Google Scholar 

  20. Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, 133–146.

    Article  Google Scholar 

  21. Essa, W., Verbeiren, B., van der Kwast, J., van de Voorde, T., & Batelaan, O. (2012). Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation, 19, 163–172.

    Article  Google Scholar 

  22. Ahmed, B. (2011). Urban land cover change detection analysis and modeling spatio-temporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh. Master’s Thesis, Erasmus Mundus Program, Universidade Nova de Lisboa (UNL), Instituto Superior de Estatística e Gestão de Informação (ISEGI), Lisbon, Portugal.

  23. Hilferink, M., Rietveld, P. Land, & Scanner, U. (1999). An integrated GIS based model for long term projections of land use in urban and rural areas. Journal of Geographical Systems, 1, 155–177.

    Article  Google Scholar 

  24. Pijanowski, B. C., Gage, S. H., & Long, D. T. (2000). A land transformation model: Integrating policy, socioeconomics and environmental drivers using a geographic information system. In L. Harris & J. Sanderson (Eds.), Landscape ecology: A top down approach (pp. 183–198). Boca Raton, FL: CRC Press.

    Google Scholar 

  25. Kok, K., & Veldkamp, T. A. (2001). Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture, Ecosystems & Environment, 85, 205–221.

    Article  Google Scholar 

  26. Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26, 525–552.

    Article  Google Scholar 

  27. Verburg, P. H., de Nijs, T. C. M., van Eck, J. R., Visser, H., & de Jong, K. (2004). A method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28, 667–690.

    Article  Google Scholar 

  28. Castella, J. C., Boissau, S., Trung, T. N., & Quang, D. D. (2005). Agrarian transition and lowland upland interactions in mountain areas in northern Vietnam: Application of a multi-agent simulation model. Agricultural Systems, 86, 312–332.

    Article  Google Scholar 

  29. Pontius, R. G., Jr., & Spencer, J. (2005). Uncertainty in extrapolations of predictive land change models. Environment and Planning B: Planning and Design, 32, 211–230.

    Article  Google Scholar 

  30. Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multi temporal satellite images: A case study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1, 3–31.

    Article  Google Scholar 

  31. Balogun, I. A., & Ishola, K. A. (2017). Projection of future changes in landuse/landcover using cellular automata/markov model over Akure city, Nigeria. Journal of Remote Sensing Technology., 5(1), 22–31.

    Article  Google Scholar 

  32. Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126, 139–154.

    Article  Google Scholar 

  33. Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96, 108–122.

    Article  Google Scholar 

  34. McConnell, W., Sweeney, S. P., & Mulley, B. (2004). Physical and social access to land: Spatio Temporal patterns of agricultural expansion in Madagascar. Agriculture, Ecosystems & Environment, 101, 171–184.

    Article  Google Scholar 

  35. Civco, D. L. (1993). Artificial neural networks for land-cover classification and mapping. International Journal of Geographical Information Science, 7, 173–186.

    Article  Google Scholar 

  36. Ahmed, B., Kamruzzaman, M., Zhu, X., Shahinoor, M. R., & Choi, K. (2013). Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh. Journal of Remote Sensing, 5, 5969–5998. https://doi.org/10.3390/rs5115969.

    Article  Google Scholar 

  37. Maduako, I. D., Yun, Z., & Patrick, B. (2016). Simulation and prediction of land surface temperature (LST) dynamics within Ikom City in Nigeria using artificial neural network (ANN). Journal of Remote Sensing & GIS, 5, 158. https://doi.org/10.4172/2469-4134.1000158.

    Google Scholar 

  38. Oyinloye, M. A., & Fasakin, J. O. (2014). Modelling urban growth from medium resolution Landsat imageries of Akure, Nigeria. International Journal for Innovation Education and Research, 2(06), 40–50.

    Google Scholar 

  39. Jr, Chavez P. S. (1996). Image-based atmospheric corrections—Revisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025–1036.

    Google Scholar 

  40. Xu, H. (2010). Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogrammetric Engineering and Remote Sensing, 76(5), 557–565.

    Article  Google Scholar 

  41. Zha, Y., Gao, Y., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

    Article  Google Scholar 

  42. Zhang, Y. S., Odeh Inakwu, O. A., & Han, C. F. (2009). Bitemporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11, 256–264.

    Article  Google Scholar 

  43. Zeng, Y., Huang, W., Zhan, F. B., Zhang, H., & Lue, H. (2010). Study on the Urban Heat Island (UHI) effects and its relationship with surface biophysical characteristics using MODIS imageries. Geo-Spatial Information Science, 13(1), 1–7. ID:1009-5020(2010)01-001-07.

  44. Pontius, R. G., Jr., Boersma, W., Castella, J.-C., Clarke, K., de Nijs, T., Dietzel, C., et al. (2008). Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42, 11–47.

    Article  Google Scholar 

  45. Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22, 1999–2014.

    Google Scholar 

Download references

Acknowledgements

The authors thank the United States Geological Survey (USGS) for free access to the Landsat datasets used in this research, and as well as the developers of SEBAL and CA_Markov algorithms used in computations. The comments and observations of the anonymous reviewers to improving the quality of this paper are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Ishola.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balogun, I.A., Ishola, K.A. A hybrid approach for monitoring future thermal environment in tropical areas. Spat. Inf. Res. 26, 151–162 (2018). https://doi.org/10.1007/s41324-018-0165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-018-0165-3

Keywords

  • Land surface temperature
  • CA_Markov
  • Urbanization
  • Land cover change