Skip to main content

Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya

Abstract

Landslide is the most common natural hazard in Himalaya that mainly triggered by the earthquake and rainfall. Landslide Susceptibility analysis is the spatial prediction of landslide occurrence based on local terrain condition. In Sikkim, every year occurrences of intense rainfall and earthquake cause landslide and related casualties along different parts of national highways. The present study is on GIS-based landslide probability analysis with ‘Information Value’ and ‘Frequency Ratio Method.’ These methods are used to derive the weighted value of causative factors and classes for Landslide Susceptibility Zonation (LSZ) along major roads. Eleven causative factors viz. slope, elevation, aspect, relative relief, land use, NDVI, soil, lithology, distance to drainage, distance to lineament, and rainfall used for landslide susceptibility analysis. ‘Information value’ and ‘frequency ratio’ methods have predicted the probability of landslide susceptibility for the study area. Receiver Operating Characteristic (ROC) curves for landslide susceptibility are drawn for both the methods and derived area under curve value are found 0.88 and 0.84 respectively. These results suggest that the ‘Information Value’ method has better performance than ‘Frequency Ratio’ Method. This statistical method ROC curve result validated by field survey and ground truth data used for accuracy assessment of LSZ map.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Sharma, L. P., Patel, N., Ghose, M. K., & Debnath, P. (2013). Synergistic application of fuzzy logic and geo-informatics for landslide vulnerability zonation—A case study in Sikkim Himalayas, India. Applied Geomatics, 5(4), 271–284. https://doi.org/10.1007/s12518-013-0115-7.

    Article  Google Scholar 

  2. Anbalagan, R., Kumar, R., Parida, S., & Lakshmanan, K. (2014). GIS Based Post Earthquake Landslide Hazard Zonation Mapping of Lachung Basin, Sikkim. International Journal of Emerging Technology and Advanced Engineering. www.ijetae.com. ISO Certified Journal, 9001(1), 431–441.

  3. Bogaard, T., & Greco, R. (2014). Preface “hillslope hydrological modelling for landslides prediction”. Hydrology and Earth System Sciences, 18(10), 4185–4188. https://doi.org/10.5194/hess-18-4185-2014.

    Article  Google Scholar 

  4. Ghosh, S., Carranza, E. J. M., van Westen, C. J., Jetten, V. G., & Bhattacharya, D. N. (2011). Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the darjeeling himalayas (india). Geomorphology, 131(1–2), 35–56. https://doi.org/10.1016/j.geomorph.2011.04.019.

    Article  Google Scholar 

  5. Floris, M., D’Alpaos, A., De Agostini, A., Stevan, G., Tessari, G., & Genevois, R. (2012). A process-based model for the definition of hydrological alert systems in landslide risk mitigation. Natural Hazards and Earth System Science, 12(11), 3343–3357. https://doi.org/10.5194/nhess-12-3343-2012.

    Article  Google Scholar 

  6. Ghosh, S., van Westen, C. J., Carranza, E. J. M., Jetten, V. G., Cardinali, M., Rossi, M., et al. (2012). Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Engineering Geology, 128, 49–62. https://doi.org/10.1016/j.enggeo.2011.03.016.

    Article  Google Scholar 

  7. Shroder, J. F., & Bishop, M. P. (1998). Mass movement in the Himalaya: New insights and research directions. Geomorphology, 26(1–3), 13–35. https://doi.org/10.1016/S0169-555X(98)00049-X.

    Article  Google Scholar 

  8. Stumpf, A., Malet, J. P., & Delacourt, C. (2017). Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sensing of Environment, 189, 40–55. https://doi.org/10.1016/j.rse.2016.11.007.

    Article  Google Scholar 

  9. Martha, T. R., Babu Govindharaj, K., & Vinod Kumar, K. (2015). Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers, 6(6), 793–805. https://doi.org/10.1016/j.gsf.2013.12.011.

    Article  Google Scholar 

  10. Nath, S. K., Vyas, M., Pal, I., Singh, A. K., Mukherjee, S., & Sengupta, P. (2005). Spectral attenuation models in the Sikkim Himalaya from the observed and simulated strong motion events in the region. Current Science, 88(2), 295–303.

    Google Scholar 

  11. Gariano, S. L., & Fausto, G. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227–252.

    Article  Google Scholar 

  12. Brenning, A., Schwinn, M., Ruiz-Páez, A. P., & Muenchow, J. (2015). Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Natural Hazards and Earth System Sciences, 15(1), 45–57. https://doi.org/10.5194/nhess-15-45-2015.

    Article  Google Scholar 

  13. Qi, S., Li, X., Guo, S., Zhan, Z., & Liao, H. (2015). Landslide-risk zonation along mountainous highway considering rock mass classification. Environmental Earth Sciences, 74(5), 4493–4505. https://doi.org/10.1007/s12665-015-4453-0.

    Article  Google Scholar 

  14. Sengupta, A., Gupta, S., & Anbarasu, K. (2010). Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Natural Hazards, 52(1), 31–42. https://doi.org/10.1007/s11069-009-9352-9.

    Article  Google Scholar 

  15. Singh, C. D., Behera, K. K., & Rocky, W. S. (2011). Landslide susceptibility along NH-39 between Karong and Mao, Senapati district, Manipur. Journal of the Geological Society of India, 78(6), 559–570. https://doi.org/10.1007/s12594-011-0120-6.

    Article  Google Scholar 

  16. Pal, R., Biswas, S. S., Mondal, B., & Pramanik, M. K. (2016). Landslides and Floods in the Tista Basin (Darjeeling and Jalpaiguri Districts): Historical Evidence, Causes and Consequences. Journal of Geophysics Union, 20(2), 209–215.

    Google Scholar 

  17. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3–4), 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004.

    Article  Google Scholar 

  18. Nefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3–4), 171–191. https://doi.org/10.1016/j.enggeo.2008.01.004.

    Article  Google Scholar 

  19. Oh, H. J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264–1276. https://doi.org/10.1016/j.cageo.2010.10.012.

    Article  Google Scholar 

  20. Song, K. Y., Oh, H. J., Choi, J., Park, I., Lee, C., & Lee, S. (2012). Prediction of landslides using ASTER imagery and data mining models. Advances in Space Research, 49(5), 978–993. https://doi.org/10.1016/j.asr.2011.11.035.

    Article  Google Scholar 

  21. Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199–211. https://doi.org/10.1016/j.cageo.2011.10.031.

    Article  Google Scholar 

  22. Shou, K. J., & Lin, J. F. (2016). Multi-scale landslide susceptibility analysis along a mountain highway in Central Taiwan. Engineering Geology, 212, 120–135. https://doi.org/10.1016/j.enggeo.2016.08.009.

    Article  Google Scholar 

  23. Erener, A., Mutlu, A., & Sebnem Dűzgűn, H. (2016). A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology, 203, 45–55. https://doi.org/10.1016/j.enggeo.2015.09.007.

    Article  Google Scholar 

  24. Chen, C. H., Ke, C. C., & Wang, C. L. (2009). A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environmental Geology, 57(4), 723–733. https://doi.org/10.1007/s00254-008-1350-9.

    Article  Google Scholar 

  25. Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., et al. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 151, 147–160. https://doi.org/10.1016/j.catena.2016.11.032.

    Article  Google Scholar 

  26. Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135. https://doi.org/10.1016/j.cageo.2012.03.003.

    Article  Google Scholar 

  27. Lee, S., Hwang, J., & Park, I. (2013). Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. CATENA, 100, 15–30. https://doi.org/10.1016/j.catena.2012.07.014.

    Article  Google Scholar 

  28. Sarkar, S., Roy, A. K., & Martha, T. R. (2013). Landslide susceptibility assessment using Information Value Method in parts of the Darjeeling Himalayas. Journal of the Geological Society of India, 82(4), 351–362. https://doi.org/10.1007/s12594-013-0162-z.

    Article  Google Scholar 

  29. Mezughi, T. H., Akhir, J. M., Rafek, A. G., & Abdullah, I. (2011). Landslide susceptibility assessment using frequency ratio model applied to an area along the E-W highway (Gerik-Jeli). American Journal of Environmental Sciences, 7(1), 43–50. https://doi.org/10.3844/ajessp.2011.43.50.

    Article  Google Scholar 

  30. Opiso, E. M., Puno, G. R., Alburo, J. L. P., & Detalla, A. L. (2016). Landslide susceptibility mapping using GIS and FR method along the Cagayan de Oro–Bukidnon–Davao City route corridor, Philippines. KSCE Journal of Civil Engineering, 20(6), 2506–2512. https://doi.org/10.1007/s12205-015-0182-x.

    Article  Google Scholar 

  31. Klose, M., Damm, B., & Terhorst, B. (2015). Landslide cost modeling for transportation infrastructures: A methodological approach. Landslides, 12(2), 321–334. https://doi.org/10.1007/s10346-014-0481-1.

    Article  Google Scholar 

  32. Sharma, L. P., Patel, N., Ghose, M. K., & Debnath, P. (2015). Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Natural Hazards, 75(2), 1555–1576. https://doi.org/10.1007/s11069-014-1378-y.

    Article  Google Scholar 

  33. Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12(5), 340–350. https://doi.org/10.1016/j.jag.2010.04.006.

    Article  Google Scholar 

  34. Rawat, M. S., Rawat, B. S., Joshi, V., Kimothi, M. M. (2012). Statistical analysis of landslide in South district, Sikkim, India: Using Remote Sensing and GIS. Journal of Environmental Science, Toxicology and Food Technology, 2(3), 47–61.

    Article  Google Scholar 

  35. Meten, M., Bhandary, N. P., & Yatabe, R. (2015). GIS-based frequency ratio and logistic regression modeling for landslide susceptibility mapping of Debre Sina area in central Ethiopia. Journal of Mountain Science, 12(6), 1355–1372. https://doi.org/10.1007/s11629-015-3464-3.

    Article  Google Scholar 

  36. Yin, K. L, & Yan, T. Z. (1988). Statistical prediction models for slope instability of metamorphosed rocks. In International symposium on landslides, Lausanne (pp. 1269–1272).

  37. Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236. https://doi.org/10.1016/j.jseaes.2012.10.005.

    Article  Google Scholar 

  38. Dasgupta, S., Ganguly, J., & Neogi, S. (2004). Inverted metamorphic sequence in the Sikkim Himalayas: Crystallization history, P–T gradient and implications. Journal of Metamorphic Geology, 22(5), 395–412. https://doi.org/10.1111/j.1525-1314.2004.00522.x.

    Article  Google Scholar 

  39. Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Evaluation and comparison of GIS based landslide susceptibility mapping procedures in Kulekhani watershed, Nepal. Journal of the Geological Society of India, 81(2), 219–231. https://doi.org/10.1007/s12594-013-0025-7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vidyasagar University for its constant support and providing the wonderful platform for research. The authors would like to acknowledge SWAT, and GLOVIS, for providing climate and satellite data for this analysis. The author also like to thank Sikkim State Disaster management Authority for provide valuable data for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhra Prakash Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandal, S.P., Chakrabarty, A. & Maity, P. Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya. Spat. Inf. Res. 26, 127–141 (2018). https://doi.org/10.1007/s41324-017-0160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0160-0

Keywords

  • Landslide susceptibility
  • Information value
  • Frequency ratio
  • Factor co-relation
  • ROC curve