Advertisement

Spatial Information Research

, Volume 25, Issue 3, pp 439–447 | Cite as

Embracing cyber-physical system as cross-platform to enhance fusion-application value of spatial information

  • Jung-Sup UmEmail author
Article

Abstract

The whole social paradigm is moving toward the cyber-physical systems society from information society. Cyber-physical systems (CPS) (e.g. self-driving car) are currently being emerged as one of important places that heavily depend on spatial data in order to facilitate intelligent control and improve real-time on-line performance. To expedite and accelerate the realization of cyber-physical systems (hereinafter CPS) in spatial information science, this paper suggests embracing CPS as cross-platform to strengthen fusion-application value of spatial information. This approach illustrates how fusion-added services by spatial information within the CPS framework are created, orchestrated, changed and managed from traditional approach in spatial information science. It offers a sound approach to overcome the uncertainties associated with emerging technology as well as to adequately accommodate real-time operating CPS system in spatial information science. Further, such paradigm of symbolic cross-platform offer new and exciting challenges for foundational research between CPS and spatial information and provide opportunities for maturation of spatial information science in the fourth industrial revolution era.

Keywords

Cyber-physical system Cross-platform Fusion-application value Spatial information 

Notes

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20144010200670).

References

  1. 1.
    Schwab, K. (2016). The fourth industrial revolution: What it means, how to respond. Cologny, Geneva, Switzerland: World Economic Forum.Google Scholar
  2. 2.
    PCAST. (2007). Leadership under challenge: Information technology R&D in a competitive world (p. 76). Washington, DC: President’s Council of Advisors on Science and Technology (PCAST).Google Scholar
  3. 3.
    Wan, J., Zhang, D., Zhao, S., Yang, L. T., & Lloret, J. (2014). Context-aware vehicular cyber-physical systems with cloud support: Architecture, challenges, and solutions. IEEE Communications Magazine, 52(8), 106–113. doi: 10.1109/MCOM.2014.6871677.CrossRefGoogle Scholar
  4. 4.
    Lee, I., & Sokolsky, O. (2010). Medical cyber physical systems. In Design Automation Conference (pp. 743–748).Google Scholar
  5. 5.
    Tan, Y., Vuran, M. C., & Goddard, S. (2009). Spatio-temporal event model for cyber-physical systems. In 2009 29th IEEE International Conference on Distributed Computing Systems Workshops (pp. 44–50). doi: 10.1109/ICDCSW.2009.82.
  6. 6.
    Karnouskos, S. (2011). Cyber-physical systems in the smartgrid. In 2011 9th IEEE International Conference on Industrial Informatics (pp. 20–23). doi: 10.1109/INDIN.2011.6034829.
  7. 7.
    Sampigethaya, K., & Poovendran, R. (2013). Aviation cyber-physical systems: Foundations for future aircraft and air transport. Proceedings of the IEEE, 101(8), 1834–1855. doi: 10.1109/JPROC.2012.2235131.CrossRefGoogle Scholar
  8. 8.
    Siddesh, G. M., Deka, G. C., Srinivasa, K. G., & Patnaik, L. M. (2016). Cyber-physical systems. Boca Raton: CRC Press.Google Scholar
  9. 9.
    Song, H., Rawat, Danda B., Jeschke, S., & Brecher, C. (Eds.). (2016). Cyber-physical systems: Foundations, principles and applications (Intelligent data-centric systems: Sensor collected intelligence) ((price: 74 USD)). Cambridge, Massachusetts, USA: Academic Press.Google Scholar
  10. 10.
    Jia, D., Lu, K., Wang, J., Zhang, X., & Shen, X. (2016). A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys & Tutorials, 18(1), 263–284. doi: 10.1109/COMST.2015.2410831.CrossRefGoogle Scholar
  11. 11.
    Xiong, G., Zhu, F., Liu, X., Dong, X., Huang, W., Chen, S., et al. (2015). Cyber-physical-social system in intelligent transportation. IEEE/CAA Journal of Automatica Sinica, 2(3), 320–333. doi: 10.1109/JAS.2015.7152667.CrossRefGoogle Scholar
  12. 12.
    Rawat, D. B., & Bajracharya, C. (2016). Vehicular cyber physical systems: Adaptive connectivity and security. Switzerland: Springer.Google Scholar
  13. 13.
    Chen, N., Zhang, X., & Wang, C. (2015). Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring. Computers and Electronics in Agriculture, 111, 78–91. doi: 10.1016/j.compag.2014.12.009.CrossRefGoogle Scholar
  14. 14.
    Adam, N. R., Shafiq, B., & Staffin, R. (2012). Spatial computing and social media in the context of disaster management. IEEE Intelligent Systems, 27(6), 90–96. doi: 10.1109/MIS.2012.113.CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Song, H., Watkins, D. W., Ong, K. G., Xue, P., Yang, Q., et al. (2015). Cyber-physical systems for water sustainability: Challenges and opportunities. IEEE Communications Magazine, 53(5), 216–222. doi: 10.1109/MCOM.2015.7105668.CrossRefGoogle Scholar
  16. 16.
    Cho, N., & Kang, Y. (2017). Space-time density of field trip trajectory: Exploring spatio-temporal patterns in movement data. Spatial Information Research, 25(1), 141–150. doi: 10.1007/s41324-016-0079-x.CrossRefGoogle Scholar
  17. 17.
    Kong, L., Jiang, D., & Wu, M. Y. (2010). Optimizing the spatio-temporal distribution of cyber-physical systems for environment abstraction. In 2010 IEEE 30th International Conference on Distributed Computing Systems (pp. 179–188). doi: 10.1109/ICDCS.2010.52.
  18. 18.
    Deshmukh, S., Natarajan, B., & Pahwa, A. (2013). State estimation in spatially distributed cyber-physical systems: Bounds on critical measurement drop rates. In 2013 IEEE International Conference on Distributed Computing in Sensor Systems (pp. 157–164). doi: 10.1109/DCOSS.2013.23.
  19. 19.
    Banerjee, A., & Gupta, S. K. S. (2013). Spatio-temporal hybrid automata for safe cyber-physical systems: A medical case study. In 2013 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (pp. 71–80). doi: 10.1145/2502524.2502535.
  20. 20.
    Salim, F., & Haque, U. (2015). Urban computing in the wild: A survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things. International Journal of Human-Computer Studies, 81, 31–48. doi: 10.1016/j.ijhcs.2015.03.003.CrossRefGoogle Scholar
  21. 21.
    Yoo, J.-S., & Shin, D.-B. (2016). Utilizing urban facility sensor information in U-City: Multi-dimensional scaling approach. Spatial Information Research, 24(2), 53–64. doi: 10.1007/s41324-016-0006-1.CrossRefGoogle Scholar
  22. 22.
    Han, J.-H., Kwon, J. H., Hong, C.-K., & Lee, Y. (2017). Development of GNSS/WSS/YRS integration algorithm for land vehicle positioning. Spatial Information Research. doi: 10.1007/s41324-017-0081-y.Google Scholar
  23. 23.
    Chen, A., Ramanandan, A., & Farrell, J. A. (2010). High-precision lane-level road map building for vehicle navigation. In 2010 IEEE/ION Position, Position and Navigation Symposium (pp. 1035–1042). doi: 10.1109/PLANS.2010.5507331.
  24. 24.
    Ahmed, M., Karagiorgou, S., Pfoser, D., & Wenk, C. (2015). A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica, 19(3), 601–632. doi: 10.1007/s10707-014-0222-6.CrossRefGoogle Scholar
  25. 25.
    Kim, D., Chung, T., & Yi, K. (2015). Lane map building and localization for automated driving using 2D laser rangefinder. In 2015 IEEE Intelligent Vehicles Symposium (IV) (pp. 680–685). doi: 10.1109/IVS.2015.7225763.
  26. 26.
    Noh, S., An, K., & Han, W. (2015). High-level data fusion based probabilistic situation assessment for highly automated driving. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems (pp. 1587–1594). doi: 10.1109/ITSC.2015.259.
  27. 27.
    Guo, C., Meguro, J., Kojima, Y., & Naito, T. (2015). A multimodal ADAS system for unmarked urban scenarios based on road context understanding. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1690–1704. doi: 10.1109/TITS.2014.2368980.CrossRefGoogle Scholar
  28. 28.
    Self-driving cars now legal in California. (2012). CNN.Google Scholar
  29. 29.
    Calvert, M., Thwaites, R., Kyte, D., & Devlin, N. (2015). Putting patient-reported outcomes on the ‘Big Data Road Map’. Journal of the Royal Society of Medicine, 108(8), 299–303. doi: 10.1177/0141076815579896.CrossRefGoogle Scholar
  30. 30.
    Gomes, L. (2016). When will Google’s self-driving car really be ready? It depends on where you live and what you mean by “ready” [News]. IEEE Spectrum, 53(5), 13–14. doi: 10.1109/MSPEC.2016.7459105.CrossRefGoogle Scholar
  31. 31.
    Eze, E. C., Zhang, S.-J., Liu, E.-J., & Eze, J. C. (2016). Advances in vehicular ad-hoc networks (VANETs): Challenges and road-map for future development. International Journal of Automation and Computing, 13(1), 1–18. doi: 10.1007/s11633-015-0913-y.CrossRefGoogle Scholar
  32. 32.
    Kim, M. G., Kang, Y. O., & Koh, J. H. (2016). Evaluating residential position inference of twitter users at district level: Focused on Seoul city. Spatial Information Research, 24(4), 493–502. doi: 10.1007/s41324-016-0039-5.CrossRefGoogle Scholar

Copyright information

© Korean Spatial Information Society 2017

Authors and Affiliations

  1. 1.Department of GeographyKyungpook National UniversityDaeguSouth Korea

Personalised recommendations