Wan, Z. (2013). Collection-6, MODIS land surface temperature products. Users’ guide. Earth Research Institute (ERI). University of California, Santa Barbara. http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C6.pdf. Accessed 25 March 2016.
Wan, Z. (2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 140, 36–45.
Article
Google Scholar
Miliaresis, G. (2014). Daily temperature oscillation enhancement of multi-temporal LST imagery. Photogrammetric Engineering and Remote Sensing, 80, 423–428.
Article
Google Scholar
Miliaresis, G. (2009). Regional thermal and terrain modeling of the Afar depression from multi-temporal night LST data. International Journal of Remote Sensing, 30, 2429–2446.
Article
Google Scholar
Miliaresis, G. (2012). Selective variance reduction of multi-temporal LST imagery in the East Africa Rift System. Earth Science Informatics, 5, 1–12.
Article
Google Scholar
Miliaresis, G. (2012). Elevation, latitude/longitude decorrelation stretch of multi-temporal LST imagery. International Journal of Remote Sensing, 33, 6020–6034.
Article
Google Scholar
Miliaresis, G. (2013). Terrain analysis for active tectonic zone characterization, a new application for MODIS night LST (MYD11C3) dataset. International Journal of Geographical Information Science, 27, 1417–1432.
Article
Google Scholar
Miliaresis, G. (2014). Spatiotemporal patterns of land surface temperature of Antarctica from MODIS Monthly LST data (MYD11C3). Journal of Spatial Science, 59, 157–166.
Article
Google Scholar
Didan, K. (2015). MYD13C2 MODIS/TAqua vegetation indices monthly L3 global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC. 10.5067/MODIS/MYD13C2.006. Accessed 25 March 2016.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.
Article
Google Scholar
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., et al. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23, 618–633.
Article
Google Scholar
Garcia, M., Fernández, N., Villagarcía, L., Domingo, F., Puigdefábregas, J., & Sandholt, I. (2014). Accuracy of the temperature-vegetation dryness index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sensing of Environment, 149, 100–117.
Article
Google Scholar
Jolliffe, I. (2002). Principal component analysis (2nd ed.). New York: Springer.
Google Scholar
Miliaresis, G. (2012). Elevation, latitude/longitude decorrelation stretch of multi-temporal LST imagery. Photogrammetric Engineering and Remote Sensing, 78, 151–160.
Article
Google Scholar
Mather, P. M., & Koch, M. (2011). Computer processing of remotely-sensed images (4th ed.). New York: Wiley.
Book
Google Scholar
Miliaresis, G. (2013). Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment. Environmental Monitoring and Assessment, 185, 1601–1612.
Article
Google Scholar
Miliaresis, G. (2016). Selective variance reduction, octave implementation. SourceForge Project, http://selective-variance-reduction.sourceforge.net. Accessed 25 March 2016.
Miliaresis, G. (2016). Revealing the precipitation dependency of regional in time and in space thermal anomaly peaks in SW USA. Modeling Earth Systems and Environment. doi:10.1007/s40808-016-0093-y.
Google Scholar
Landam, S., & Everitt, B. S. (2004). A handbook for statistical analysis using SPSS. New York: Chapman and Hall/CRC Press.
Google Scholar
Miliaresis, G. (2016). An unstandardized selective variance reduction script for elevation, latitude & longitude decorrelation stretch of multi-temporal LST imagery. Modeling Earth Systems and Environment. doi:10.1007/s40808-016-0103-0.
Google Scholar
Wang, S. Y., & Gillies, R. R. (2012). Climatology of the U.S. inter-mountain west. In S.-Y. Wang & R. R. Gillies (Eds.) Modern climatology. InTech, pp 153–176. http://www.intechopen.com/books/modern-climatology/climatology-of-the-u-s-intermountain-west. Accessed 25 March 2016.
Barnett, T. P., & Pierce, D. W. (2008). When will lake mead go dry? Water Resources Research, 44, W03201. doi:10.1029/2007WR006704.
Article
Google Scholar
Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. American Geophysical Union EOS, 81, 583–585.
Article
Google Scholar
SRTM30. (2015). SRTM30 Digital Elevation Model, Version 2.1. US Geological Survey. http://e4ftl01.cr.usgs.gov/SRTM/SRTMGL30.002/. Accessed 25 March 2016.
MYD11C2. (2016). Aqua-MODIS monthly LST imagery, version 006. http://e4ftl01.cr.usgs.gov/MOLA/MYD11C3.006/. Accessed 25 March 2016.