Skip to main content

Advertisement

Log in

Autopilot design of a class of miniature autonomous blimps enabled by switched controllers

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The Georgia Tech Miniature Autonomous Blimp (GT-MAB) is developed as an indoor flying robot for education and research. The GT-MAB features extended flight duration and safety for human–robot interaction. The influence of aerodynamics on the blimp is significant and must be considered to achieve autonomous flying. This paper presents the mathematical modeling, system identification, and a switched controller design approach to achieve waypoint and line following behaviors for the GT-MAB. The switched controllers incorporate a scheduling algorithm to handle uncertainties of propeller efficiency and asymmetric envelope. Experiments have demonstrated that the proposed controllers enable flights that collect light measurements in a lab environment. The collected data is used to establish a 3D map of light intensity in a closed space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Burri, M., Gasser, L., Kach, M., Laube, S., Ledergerber, A.: Design and control of a spherical omnidirectional blimp. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1873–1879 (2013)

  • Cho, S., Mishra, V., Tao, Q., Vamell, P., King-Smith, M., Muni, A., Smallwood, W., Zhang, F.: Autopilot design for a class of miniature autonomous blimps. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 27–30 (2017)

  • Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Technique, pp. 145–156 (2000)

  • do Valle, R.C., Menegaldo, L.L., Simões, A.M.: Smoothly gain-scheduled control of a tri-turbofan airship. J. Guid. Control. Dyn. 38(1), 53–61 (2015)

    Article  Google Scholar 

  • Dunbabin, M., Marques, L.: Robotics for environmental monitoring. IEEE Robot. Autom. Mag. 19, 21–24 (2012)

    Google Scholar 

  • Elfes, A., Bueno, S.S., Bergerman, M., Ramos, J.J.G.: A semi-autonomous robotic airship for environmental monitoring missions. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automations, pp. 614–619 (1998)

  • Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1993)

    Google Scholar 

  • Glenn, S., Miles, T., Seroka, G., Xu, Y., Forney, R., Yu, F., Roarty, H., Schofield, O., Kohut, J.: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 7(10887), 1–10 (2016)

    Google Scholar 

  • Gomes, S.B.V., Ramos, J.J.G.: Airship dynamic modeling for autonomous operation. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation (ICRA), pp. 3462–3467 (1998)

  • Gonzalez, P., Burgard, W., Sanz, R., Fernandez, J.L.: Developing a low-cost autonomous indoor blimp. J. Phys. Agents 3, 43–52 (2009)

    Google Scholar 

  • Kantor, G., Wettergreen, D., Ostrowski, J.P., Singh, S.: Collection of environmental data from an airship platform. Proc. SPIE 4571, 76–83 (2001)

    Article  Google Scholar 

  • Kim, J., Keller, J., Kumar, R.V.: Design and verification of controllers for airships. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1, pp. 54–60 (2003)

  • Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using led lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  • Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 31–42 (1996)

  • Levoy, M.: Light fields and computational imaging. Computer 39(8), 46–55 (2006)

    Article  Google Scholar 

  • Ljung, L., Singh, R.: Version 8 of the system identification toolbox. In: Proc. 6th IFAC Symposium on System Identification The International Federation of Automatic Control, pp. 1826–1831 (2012)

  • Mukhopadhyay, S., Wang, C., Patterson, M., Malisoff, M., Zhang, F.: Collaborative autonomous surveys in marine environments affected by oil spills. In: Koubaa, A., Khelil, A. (eds.) Cooperative Robots and Sensor Networks, Studies in Computational Intelligence, vol. 554, pp. 87–113. Springer, Berlin (2014)

    Google Scholar 

  • Müller, J., Burgard, W.: Efficient probabilistic localization for autonomous indoor airships using sonar, air flow, and IMU sensors. Adv. Robot. 27(January), 711–724 (2013)

    Article  Google Scholar 

  • Nise, N.S.: Control Systems Engineering. Addison-Wesley, Boston (1995)

    MATH  Google Scholar 

  • Paulos, E., Canny, J.: PRoP: personal roving presence. In: CHI ’98 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 296–303 (1998)

  • Pilz, J., Spöck, G.: Why do we need and how should we implement bayesian kriging methods. Stoch. Env. Res. Risk Assess. 22(5), 621–632 (2008)

    Article  MathSciNet  Google Scholar 

  • St-Onge, D., Iment Gosselin, C., Reeves, N.: Dynamic modelling and control of a cubic flying blimp using external motion capture. J. Syst. Control Eng. 229(10), 970–982 (2015)

    Google Scholar 

  • Zhang, H., Ostrowski, J.P.: Visual servoing with dynamics: control of an unmanned blimp. In: Proceedings of the 1999 IEEE/RSJ International Conference on Robotics and Automation, pp. 618–623 (1999)

  • Zhang, F., Marani, G., Smith, R., Choi, H.: Future trends in marine robotics. IEEE Robot. Autom. Mag. 22, 14–21 (2015)

    Article  Google Scholar 

  • Zufferey, J.-C., Guanella, A., Beyeler, A., Floreano, D.: Flying over the reality gap: from simulated to real indoor airships. Auton. Robot 21, 243–254 (2006)

    Article  Google Scholar 

  • Zwann, S., Bernardino, A., Santos-Victor, J.: Vision based station keeping and docking for an aerial blimp. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 614–619 (2000)

Download references

Funding

Funding was provided by Office of Naval Research (N00014-19-1-2556, N00014-19-1-2266, N00014-16-1-2667), National Science Foundation (OCE-1559475, CNS-1828678, S&AS-1849228), U.S. Naval Research Laboratory (N00173-17-1-G001, N00173-19-P-1412), National Oceanic and Atmospheric Administration (NA16NOS0120028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Tao, Q., Varnell, P. et al. Autopilot design of a class of miniature autonomous blimps enabled by switched controllers. Int J Intell Robot Appl 6, 385–396 (2022). https://doi.org/10.1007/s41315-022-00230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-022-00230-6

Keywords

Navigation