Skip to main content
Log in

Passive-active hybrid release strategy for micro-object separation task

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

While methods for analysis of microbial samples exist in microbiology, most take in data at a population level, and cannot account for small variations within groups. Single-cell analysis (SCA) enables access to more detailed information about a culture than common analysis techniques. Techniques for single-cell analysis exist, but are limited in terms of speed and dexterity. A robotic pick-and-place system could potentially be a viable, efficient method of facilitating SCA. In this paper, a simple pick-and-place system for microbiological applications is presented. Similar systems have been presented in literature with very good positional accuracy and reliability (which are desirable characteristics in a micromanipulation system), but there have been only few advances in minimizing complexity in such systems. Moreover, these systems suffer from domination of adhesion forces at micro-scale during releasing task. Using only two of 3-axes motorized stages and two end effectors; a hybrid passive-active release strategy is presented. The proposed system achieves semi-automated pick-and-place of spherical objects in the low end of the micrometer scale (5–50 \(\upmu \hbox {m}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avci, E., Hattori, T., Kamiyama, K., Kojima, M., Horade, M., Mae, Y., Arai, T.: Piezo-actuated parallel mechanism for biological cell release at high speed. Biomed. Microdevices 17(5), 98 (2015)

    Article  Google Scholar 

  • Bhringer, K.F., Fearing, R.S., Goldberg, K.Y.: Handbook of Indus-Trial Robotics, 2nd ed., vol. 55, pp. 1045–1066. Wiley, New York (2007)

  • Boudaoud, M., Haddab, Y., Le Gorrec, Y.: Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans. Mechatron. 18(3), 1130–1139 (2013)

    Article  Google Scholar 

  • Chen, T., Pan, M., Wang, Y., Liu, J., Chen, L., Sun, L.: Manipulation of microobjects based on dynamic adhesion control. Int. J. Adv. Robot. Syst. 9(3), 89 (2012)

    Article  Google Scholar 

  • Chen, T., Sun, L., Chen, L., Rong, W., Li, X.: A hybrid-type electrostatically driven microgripper with an integrated vacuum tool. Sens. Actuators A Phys. 158(2), 320–327 (2010)

    Article  Google Scholar 

  • Chen, T., Wang, Y., Yang, Z., Liu, H., Liu, J., Sun, L.: A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2), 33 (2017)

    Article  Google Scholar 

  • Chen, B.K., Zhang, Y., Sun, Y.: Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J. Microelectromech. Syst. 18(3), 652–659 (2009)

    Article  Google Scholar 

  • Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., Gupta, S.K.: Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans. Autom. Sci. Eng. 11(2), 338–347 (2014)

    Article  Google Scholar 

  • Chu, H.K., Mills, J.K., Cleghorn, W.L.: Automated dual-arm micromanipulation with path planning for micro-object handling. Robot. Auton. Syst. 74(2015), 166–174 (2015)

    Article  Google Scholar 

  • Demaghsi, H., Mirzajani, H., Ghavifekr, H.B.: A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsyst. Technol. 20(12), 2191–2202 (2014)

    Article  Google Scholar 

  • Dumtre, A., Dubey, J.P., Ferguson, D.J., Bongrand, P., Azas, N., Puech, P.H.: Mechanics of the Toxoplasma gondii oocyst wall. Proc. Natl. Acad. Sci. 110(28), 11535–11540 (2013)

    Article  Google Scholar 

  • Fearing, R.S.: Survey of sticking effects for micro parts handling. In: Intelligent robots and systems, Pittsburgh (1995)

  • Gauthier, M., Regnier, S., Rougeot, P.: Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 3(3–4), 389–413 (2006)

    Article  Google Scholar 

  • Horade, M., Kojima, M., Kamiyama, K., Kurata, T., Mae, Y., Arai, T.: Development of an optimum end-effector with a nano-scale uneven surface for non-adhesion cell manipulation using a micro-manipulator. J. Micromech. Microeng. 25(11), 115002 (2015)

    Article  Google Scholar 

  • Inoue, K., Matsuzaki, Y., Lee, S.: Micromanipulation using micro hand with two rotational fingers. J. Micro Nano Mechatron. 7(1–3), 33–44 (2012)

    Article  Google Scholar 

  • Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: High-speed active release end-effector motions for precise positioning of adhered micro-objects. World J. Eng. Technol. 6(01), 81 (2017)

    Article  Google Scholar 

  • Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromechan. Microeng. 18(5), 8 (2008)

    Google Scholar 

  • Kim, E., Kojima, M., Kamiyama, K., Horade, M., Mae, Y., Arai, T.: Accurate releasing of biological cells using two release methods. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon (2016)

  • Knig, K., Liang, H., Berns, M.W., Tromberg, B.J.: Cell damage by near-IR microbeams. Nature 377, 20–21 (1995)

    Article  Google Scholar 

  • Lambert, P., Rgnier, S.: Surface and contact forces models within the framework of microassembly. J. Micromechatron. 3(2), 123–157 (2006)

    Article  Google Scholar 

  • Liang, C., Wang, F., Shi, B., Huo, Z., Zhou, K., Tian, Y., Zhang, D.: Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens. Actuators A Phys. 269, 227–237 (2018)

    Article  Google Scholar 

  • Liu, J., Shi, C., Wen, J., Pyne, D., Liu, H., Ru, C., Sun, Y.: Automated vitrification of embryos: a robotics approach. IEEE Robot. Autom. Mag. 22(2), 33–40 (2015)

    Article  Google Scholar 

  • Mohanty, S.K., Rapp, A., Monajembashi, S., Gupta, P.K., Greulich, K.O.: Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat. Res. 157(4), 378–385 (2002)

    Article  Google Scholar 

  • Nakajima, M., Takeuchi, M., Hisamoto, N., Fukuda, T., Hasegawa, Y., Huang, Q.: Novel in situ nanomanipulation integrated with SEM-CT imaging system. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)

  • Pahwa, T., Gupta, S., Bansal, V., Prasad, B., Kumar, D.: Analysis and design optimization of laterally driven poly-silicon electro-thermal micro-gripper for micro-objects manipulation. In: COMSOL Conference, Bangalore (2012)

  • Shin, J.H., Seo, J., Hong, J., Chung, S.K.: Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects. Sens. Actuators B Chem. 246, 415–420 (2017)

    Article  Google Scholar 

  • Ta, Q.M., Cheah, C.C.: Optical manipulation of multiple microscopic objects with brownian perturbations. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)

  • Tseng, F.-G., Santra, T.S.: Essentials of single-cell analysis. Springer, Berlin (2016)

    Book  Google Scholar 

  • Volpe, G., Kurz, L., Callegari, A., Volpe, G., Gigan, S.: Speckle optical tweezers: micromanipulation with random light fields. Opt. Express 22(15), 18159–18167 (2014)

    Article  Google Scholar 

  • Wang, W.H., Liu, X.Y., Sun, Y.: Robust contact detection in micromanipulation using computer vision microscopy. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York (2006)

  • Xie, H., Onal, C., Rgnier, S., Sitti, M.: Atomic Force Microscopy Based Nanorobotics: Modelling, Simulation, Setup Building and Experiments, vol. 71. Springer, Berlin (2011)

    Google Scholar 

  • Xu, Q.: Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sens. J. 15(10), 6017–6026 (2015)

    Article  Google Scholar 

  • Zhang, Y., Chen, B.K., Liu, X., Sun, Y.: Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 26(1), 200–207 (2010)

    Article  Google Scholar 

  • Zimmermann, S., Tiemerding, T., Haenssler, O.C., Fatikow, S.: Automated robotic manipulation of individual sub-micro particles using a dual probe setup inside the scanning electron microscope. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle (2015)

Download references

Acknowledgements

Research supported by Massey University Research Fund (MURF) 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebubekir Avci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 10162 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crimp, D., Suhaimi, S. & Avci, E. Passive-active hybrid release strategy for micro-object separation task. Int J Intell Robot Appl 2, 436–444 (2018). https://doi.org/10.1007/s41315-018-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0073-7

Keywords

Navigation