Skip to main content
Log in

Momentum-based trajectory planning for lower-limb exoskeletons supporting sit-to-stand transitions

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The ability to move one’s body from sitting to standing is a crucial ability for independent living. Especially for seniors with decreasing muscular strength, sit-to-stand (STS) transitions are exceptionally risky and often call for assistance. In general, an STS transition is a complex full-body activity that requires the synergistic coordination of the upper and lower limbs and trunk. An exoskeleton can support this multiple degrees-of-freedom problem by controlling the trajectory of the center of mass of the resulting human–robot system. However, while human movement is highly variable, exoskeletons usually only support one of multiple possible solutions. In this paper, we first present an analysis of factors that affect human center of mass trajectory and show that different human movement velocity profiles during STS transitions require different control strategies of the center of mass. Therefore, we propose a model based on horizontal and vertical momentums that enables efficient planning of the center of mass trajectory for any STS transition velocity. Finally, we validate this model by presenting an inverse kinematics solution for the CoM to joint angle problem using a deep Long Short-Term Memory (LSTM) network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anam, K., Al-Jumaily, A.A.: Active exoskeleton control systems: state of the art. Proc. Eng. 41, 988–994 (2012)

    Article  Google Scholar 

  • Bengio, Y.: Practical recommendations for gradient-based training of deep architectures in neural networks: tricks of the trade, pp. 437–478. Springer, Berlin, Heidelberg (2012)

    Book  Google Scholar 

  • Burns, A., Lawlor, B., Craig, S.: Rating scales in old age psychiatry. Br. J. Psychiatry 180, 161–167 (2002)

    Article  Google Scholar 

  • Chollet, F., et al.: Keras. GitHub (2015)

  • Datteri, E.: Predicting the long-term effects of human-robot interaction: a reflection on responsibility in medical robotics. Sci. Eng. Ethics 19(1), 139–160 (2013)

    Article  Google Scholar 

  • de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  • de Rezende, L.F.M., Rey-López, J.P., Matsudo, V.K.R., do Carmo Luiz, O.: Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health 14, 333 (2014)

    Article  Google Scholar 

  • Dehlin, O., Hedenrud, B., Horal, J.: Back symptoms in nursing aides in a geriatric hospital. An interview study with special reference to the incidence of low-back symptoms. Scand. J. Rehabil. Med. 8(2), 47–53 (1976)

    Google Scholar 

  • Fattah, A., Agrawal, S.K., Catlin, G., Hamnett, J.: Design of a passive gravity-balanced assistive device for sit-to-stand tasks. J. Mech. Des. 128(5), 1122 (2006)

    Article  Google Scholar 

  • Fujimura, T., Yasuda, N., Ohara, H.: Work-related factors of low back pain among nursing aides in nursing homes for the elderly. Sangyo Eiseigaku Zasshi 37(2), 89–98 (1995)

    Article  Google Scholar 

  • Gunasekara, J.M.P., Gopura, R.A.R.C., Jayawardane, T.S.S., Lalitharathne, S.W.H.M.T.D.: Control methodologies for upper limb exoskeleton robots. In: 2012 IEEE/SICE International Symposium on System Integration (SII), 2012, pp. 19–24

  • Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8(3), 383–392 (1990)

    Article  Google Scholar 

  • Karpathy, A.: The unreasonable effectiveness of recurrent neural networks. Andrej Karpathy blog

  • Kazerooni, H.: Exoskeletons for human performance augmentation. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Berlin (2008)

  • Kingma, D.P., Ba,J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, 2015 (2014). http://arXiv:1412.6980 [cs])

  • Latash, M.L., Scholz, J.P., Schöner, G.: Toward a new theory of motor synergies. Mot. Control 11(3), 276–308 (2007)

    Article  Google Scholar 

  • Latash, M.L., Levin, M.F., Scholz, J.P., Schöner, G.: Motor control theories and their applications. Medicina (Kaunas) 46(6), 382–392 (2010)

    Google Scholar 

  • Lummel, R.C.V., et al.: Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults. Gait Posture 38(1), 153–156 (2013)

    Article  Google Scholar 

  • Mistry, M., Murai, A., Yamane, K., Hodgins, J.: Sit-to-stand task on a humanoid robot from human demonstration. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 218–223 (2010)

  • Olah, C.: Understanding LSTM Networks. Colah’s Bolg

  • Pai, Y.-C., Patton, J.: Center of mass velocity-position predictions for balance control. J. Biomech> 30(4), 347–354 (1997)

    Article  Google Scholar 

  • Pai, Y.C., Rogers, M.W.: Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med. Sci. Sports Exerc. 22(3), 378–384 (1990)

    Article  Google Scholar 

  • Pai, Y.-C., Naughton, B., Chang, R., Rogers, M.: Control of body centre of mass momentum during sit-to-stand among young and elderly adults. Gait Posture 2(2), 109–116 (1994)

    Article  Google Scholar 

  • Reinhart, R.F., Steil, J.J.: Reaching movement generation with a recurrent neural network based on learning inverse kinematics for the humanoid robot iCub. In: 2009 9th IEEE-RAS International Conference on Humanoid Robots, pp. 323–330 (2009)

  • Reisman, D.S., Scholz, J.P., Schöner, G.: Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture 15(1), 45–55 (2002)

    Article  Google Scholar 

  • Roebroeck, M.E., Doorenbosch, C.A.M., Harlaar, J., Jacobs, R., Lankhorst, G.J.: Biomechanics and muscular activity during sit-to-stand transfer. Clin. Biomech. 9(4), 235–244 (1994)

    Article  Google Scholar 

  • Schenkman, M., Berger, R.A., Riley, P.O., Mann, R.W., Hodge, W.A.: Whole-body movements during rising to standing from sitting. Phys. Therapy 70(10), 638–648 (1990). (discussion 648–51)

    Article  Google Scholar 

  • Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126(3), 289–306 (1999)

    Article  Google Scholar 

  • Sikiru, L., Hanifa, S.: Prevalence and risk factors of low back pain among nurses in a typical Nigerian hospital. Afr. Health Sci. 10(1), 26–30 (2010)

    Google Scholar 

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Research supported by the University of Cincinnati—Creating Our Third Century—Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaurav Patil or Lillian Rigoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, G., Rigoli, L., Richardson, M.J. et al. Momentum-based trajectory planning for lower-limb exoskeletons supporting sit-to-stand transitions. Int J Intell Robot Appl 2, 180–192 (2018). https://doi.org/10.1007/s41315-018-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0044-z

Keywords

Navigation