RAS: a robotic assembly system for steel structure erection and assembly

Abstract

This research focuses on a long-standing, yet critical problem in the erection of steel structures. In the current state of practice, steel workers must stand on an unfinished structure to assist with the assembly of structural elements manually. They must pull on the wire hanging under the rigging elements to align the bolting holes of the moving and fixed elements. This work is often performed in high places, which can be very risky. Therefore, we have developed a robotic assembly system (RAS) for steel beam erection and assembly to prevent workers from having to work in a high place. The RAS consists of four methods: rotation, alignment, bolting, and unloading. The rotation method involves a flywheel installed on top of the rigging beam, which aims to rotate the beam to the assembly angle. The alignment method includes both vertical and horizontal alignment. The vertical alignment relies on a camera and a marker on the column to align the beam altitude. The horizontal alignment relies on a specially-designed beam, which allows for it to be smoothly guided into the right position. The bolting method is used to connect the beam to a fixed element. We designed an additional guide hole above each bolt hole. The bolt can be inserted in the guide hole and slid to the bolt hole. The unloading method is used to unload the crane cable and the RAS. We use a pin mechanism for the beam-hook connection so it can easily be unplugged by a motor. The system is built in a scaled experimental construction site to validate its feasibility. The results show that the RAS can operate the assembly process without humans working at risky heights, and can complete faster than the traditional method. In conclusion, we have developed a robotics assembly system that can help reduce the frequency of accidental falls during the steel beam assembly process. The RAS adheres to the process of the current erection method and can be broadly introduced to existing construction sites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Beavers, J.E., Moore, J.R., Schriver, W.R.: Steel erection fatalities in the construction industry. J. Constr. Eng. Manag. 135(3), 227–234 (2009)

    Article  Google Scholar 

  2. Bijlaard, F.S.K., Coelho, A.M.G.O., Magalhães, V.J.D.A.: Innovative joints in steel construction. Steel Constr. 2(4), 243–247 (2009)

    Article  Google Scholar 

  3. Bock, T., Linner, T.: Construction robots: elementary technologies and single-task construction robots. Cambridge University Press (2016a)

  4. Bock, T., Linner, T.: Site automation: automated/robotic on-site factories. Cambridge University Press (2016b)

  5. Brown, M.: Advanced digital photography. Media Publishing Pvt, Limited, Australia (2004)

    Google Scholar 

  6. CM Lab: Vortex Master. http://www.cm-labs.com/market/construction/products/vortex-master (2015). Accessed 10 Apr 2017

  7. Chang, Y.-C., Hung, W.-H., Kang, S.-C.: A fast path planning method for single and dual crane erections. Autom. Constr. 22, 468–480 (2012)

    Article  Google Scholar 

  8. Cheng, T., Teizer, J.: Modeling tower crane operator visibility to minimize the risk of limited situational awareness. J. Comput. Civ. Eng. 28(3), 04014004 (2014)

    Article  Google Scholar 

  9. Chi, H.-L., Chen, Y.-C., Kang, S.-C., Hsieh, S.-H.: Development of user interface for tele-operated cranes. Adv. Eng. Inf. 26(3), 641–652 (2012)

    Article  Google Scholar 

  10. Chi, H.-L., Kang, S.-C.: A physics-based simulation approach for cooperative erection activities. Autom. Constr. 19(6), 750–761 (2010)

    Article  Google Scholar 

  11. Chin, S., Yoon, S., Kim, Y.-S., Ryu, J., Choi, C., Cho, C.-Y.: Realtime 4D CAD + RFID for project progress management. Construction Research Congress (CRC): broadening perspectives, San Diego, California. 331–340 (2005)

  12. Chu, B., Jung, K., Lim, M.-T., Hong, D.: Robot-based construction automation: an application to steel beam assembly (Part I). Autom. Constr. 32, 46–61 (2013)

    Article  Google Scholar 

  13. ConXtech: ConX system. http://www.conxtech.com/conx-system/ (2015). Accessed 10 Apr 2017

  14. Feng, C., Kamat, V.R.: Plane registration leveraged by global constraints for context-aware AEC application. Aided Civ. Infrastruct. Eng. 28, 325–343 (2013)

    Article  Google Scholar 

  15. Feng, C., Xiao, Y., Willette, A., McGee, W., Kamat, V.R.: Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites. Autom. Constr. 59, 128–138 (2015)

    Article  Google Scholar 

  16. GHI Electronics LLC:.NET Gadgeteer. https://www.ghielectronics.com/catalog/category/265 (2014). Accessed 10 Apr 2017

  17. Gajamohan, M., Merz, M., Thommen, I., D’Andrea, R.: The cubli: a cube that can jump up and balance. International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal. pp. 3722–3727 (2012)

  18. Gambao, E., Balaguer, C., Gebhart, F.: Robot assembly system for computer-integrated construction. Autom. Constr. 9(5–6), 479–487 (2000)

    Article  Google Scholar 

  19. Gams, A., Zlajpah, L., Lenarcic, J.: Imitating human acceleration of a gyroscopic device. Robotica 25(04), 501–509 (2007)

    Article  Google Scholar 

  20. Garg, A., Kamat, V.R.: Virtual prototyping for robotic fabrication of rebar cages in manufactured concrete construction. J. Archit. Eng. 20(1), 06013002 (2014)

    Article  Google Scholar 

  21. Huang, J.-Y., Gau, C.-Y.: Modelling and designing a low-cost high-fidelity mobile crane simulator. Int. J. Hum.-Comput. St. 58(2), 151–176 (2003)

    Article  Google Scholar 

  22. Hung, W.-H., Liu, C.-W., Liang, C.-J., Kang, S.-C.: Strategies to accelerate the computation of erection paths for construction cranes. Autom. Constr. 62, 1–13 (2016)

    Article  Google Scholar 

  23. Irizarry, J.: Application of methods analysis to steel erection tasks: identification of factors affecting labor performance. Int. J. Constr. Manag. 11(4), 31–47 (2011)

    Google Scholar 

  24. Irizarry, J., Abraham, D.M.: Assessment of risk perception of ironworkers. J. Constr. Res. 7(1/2), 111–132 (2006)

    Article  Google Scholar 

  25. Juang, J.R., Hung, W.H., Kang, S.C.: SimCrane 3D+: a crane simulator with kinesthetic and stereoscopic vision. Adv. Eng. Inf. 27(4), 506–518 (2013)

    Article  Google Scholar 

  26. Jung, K., Chu, B., Hong, D.: Robot-based construction automation: an application to steel beam assembly (Part II). Autom. Constr. 32, 62–79 (2013a)

    Article  Google Scholar 

  27. Jung, K., Chu, B., Park, S., Hong, D.: An implementation of a teleoperation system for robotic beam assembly in construction. Int. J. Precis. Eng. Manuf. 14(3), 351–358 (2013b)

    Article  Google Scholar 

  28. Jung, K., Chu, B., Bae, K., Lee, Y., Hong, D., Park, S., Lim, M.-T.: Development of automation system for steel construction based on robotic crane. International Conference on Smart Manufacturing Application, Kintex, Gyeonggi-do, Korea. 486–489 (2008)

  29. KUKA: KR 16 CR v2 technical data, KUKA Robotics Corporation (2005)

  30. Kahane, B., Rosenfeld, Y.: Real-time “sense-and-act” operation for construction robots. Autom. Constr. 13(6), 751–764 (2004)

    Article  Google Scholar 

  31. Kang, S.-C., Chi, H.-L., Miranda, E.: Three-dimensional simulation and visualization of crane assisted construction erection processes. J. Comput. Civ. Eng. 23(6), 363–371 (2009)

    Article  Google Scholar 

  32. Kang, S.C., Miranda, E.: Planning and visualization for automated robotic crane erection processes in construction. Autom. Constr. 15(4), 398–414 (2006)

    Article  Google Scholar 

  33. Kang, S.-C., Miranda, E.: Numerical methods to simulate and visualize detailed crane activities. Comput. Aided Civ Inf. 24(3), 169–185 (2009)

    Article  Google Scholar 

  34. Kim, D.-W., An, S.-H., Cho, H., Jeong, J.-W., Lee, B.-H., Dohe, N.L., Kang, K.-I.: Development of conceptual model of construction factory for automated construction. Build. Environ. 44(8), 1634–1642 (2009)

    Article  Google Scholar 

  35. Kim, K., Kim, M.: RFID-based location-sensing system for safety management. Pers. Ubiquit. Comput. 16(3), 235–243 (2012)

    Article  Google Scholar 

  36. Kim, C.-W., Kim, T., Lee, U.-K., Cho, H., Kang, K.-I.: Advanced steel beam assembly approach for improving safety of structural steel workers. J. Constr. Eng. Manage. 142(4), 05015019 (2016)

    Article  Google Scholar 

  37. Kuo, T.-Y., Kang, S.-C.: Control of fast crane operation. Autom. Constr. 42, 25–35 (2014)

    Article  Google Scholar 

  38. LEGO: LEGO Mindstroms. http://www.lego.com/en-us/mindstorms/ (2014). Accessed 10 Apr 2017

  39. Lee, G., Cho, J., Ham, S., Lee, T., Lee, G., Yun, S.-H., Yang, H.-J.: A BIM- and sensor-based tower crane navigation system for blind lifts. Autom. Constr. 26, 1–10 (2012a)

    Article  Google Scholar 

  40. Lee, C., Lee, G.: Feasibility of beam erection with a motorized hook-block,”. Autom. Constr. 41, 25–32 (2014)

    Article  Google Scholar 

  41. Lee, G., Lee, G., Lee, T.: Field applicability and feasibility of the automated non-powered multi-beam lifting system. Autom. Constr. 28, 26–35 (2012d)

    Article  Google Scholar 

  42. Lee, H.-S., Lee, K.-P., Park, M., Baek, Y., Lee, S.: RFID-based real-time locating system for construction safety management. J. Comput. Civ. Eng. 26(3), 366–377 (2012b)

    Article  Google Scholar 

  43. Lee, C., Lee, G., Park, S., Cho, J.: Analysis of field applicability of the rotation-controllable tower-crane hook block. Autom. Constr. 21, 81–88 (2012c)

    Article  Google Scholar 

  44. Lei, Z., Taghaddos, H., Hermann, U., Al-Hussein, M.: A methodology for mobile crane lift path checking in heavy industrial projects. Autom. Constr. 31, 41–53 (2013)

    Article  Google Scholar 

  45. Liang, C.-J., Kang, S.-C.: Development of a steel beam hauling system for automatic steel beam assembly. International Conference on Computing in Civil and Building Engineering (ICCCBE), Orlando, Florida. 1295–1302 (2014)

  46. Lin, K.-C., Jhuang, S.-J., Lin, C.-H.: Study on seismic performance of steel shop-fabricated moment connections, National Center for Research on Earthquake Engineering (2013)

  47. Mo, Y.-H., Kang, T.-K., Zhang, H.-Z., Hong, D.-H., Lim, M.-T.: Development of 3D camera-based robust bolt-hole detection system for bolting cabin. Autom. Constr. 44, 1–11 (2014)

    Article  Google Scholar 

  48. Nam, H., Choi, W., Ryu, D., Lee, Y., Lee, S.-H., Ryu, B.: Design of a bolting robot for constructing steel structure. International Conference on Control, Automation and Systems, COEX, Seoul, Korea. 1946–1949 (2007)

  49. National Instruments Corporation: LabVIEW system design software. http://www.ni.com/labview/ (2014). Accessed 10 Apr 2017

  50. OMAX Corporation: OMAX 2652 JetMachining® Center. https://www.omax.com/omax-machine/2652 (2016). Accessed 10 Apr 2017

  51. Olson, E.: AprilTag: a robust and flexible visual fiducial system. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. (2011)

  52. Park, M.-W., Brilakis, I.: Construction worker detection in video frames for initializing vision trackers. Autom. Constr. 28, 15–25 (2012)

    Article  Google Scholar 

  53. Pavlovcic, L., Krajnc, A., Beg, D.: Cost function analysis in the structural optimization of steel frames. Struct. Multidiscip. O. 28(4), 286–295 (2004)

    Article  Google Scholar 

  54. Peurifoy, R. L., Schexnayder, C. J., Shapira, A., Schmitt, R. L.: Construction planning, equipment, and methods, McGraw-Hill, New York (2011)

    Google Scholar 

  55. Pitsco Education: TETRIX®. http://www.tetrixrobotics.com/ (2014). Accessed 10 Apr 2017

  56. Ray, S.J., Teizer, J.: Coarse head pose estimation of construction equipment operators to formulate dynamic blind spots. Adv. Eng. Inf. 26(1), 117–130 (2012)

    Article  Google Scholar 

  57. Saidi, K.S., Bunch, R., Lytle, A. M., Proctor F.: Development of a real-time control system architecture for automated steel construction. 23th International Symposium on Automation and Robotics in Construction (ISARC), Tokyo, Japan, 412–417 (2006)

  58. Teizer, J., Cheng, T., Fang, Y.: Location tracking and data visualization technology to advance construction ironworkers’ education and training in safety and productivity. Autom. Constr. 35, 53–68 (2013)

    Article  Google Scholar 

  59. The Steel Construction Institute: Quicon® design guide to BS 5950-1. http://www.newsteelconstruction.com/wp/quicon-design-guide-to-bs-5950-1/ (2004). Accessed 10 Apr 2017

  60. Vijay, V., Sen, R.N., Richardson, S.: Risk perception of structural steel erection workers in Malaysia—Ergonomic implications for occupational safety and health. International Symposium on Past, Present and Future Ergonomics, Occupational Safety and Health, Bali, Indonesia. pp. 100–105 (2006)

  61. Viscomi, V.B., Michalerya, W.D., Lu, L.-W.: Automated construction in the ATLSS integrated building systems. Autom. Constr. 3(1), 35–43 (1994)

    Article  Google Scholar 

  62. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings—literature review and future needs. Autom. Constr. 38, 109–127 (2014)

    Article  Google Scholar 

  63. Wakisaka, T., Furuya, N., Inoue, Y., Shiokawa, T.: Automated construction system for high-rise reinforced concrete buildings. Autom. Constr. 9(3), 229–250 (2000)

    Article  Google Scholar 

  64. Wang, X., Zhang, Y.Y., Wu, D., Gao, S.D.: Collision-free path planning for mobile cranes based on ant colony algorithm. Key Eng. Mat. 467–469, 1108–1115 (2011)

    Article  Google Scholar 

  65. Yoo, W.S., Lee, H.-J., Kim, D.-I., Kang, K.-I., Cho, H.: Genetic algorithm-based steel erection planning model for a construction automation system. Autom. Constr. 24, 30–39 (2012)

    Article  Google Scholar 

  66. Yu, S.-N., Ryu, B.-G., Lim, S.-J., Kim, C.-J., Kang, M.-K., Han, C.-S.: Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization. Autom. Constr. 18(5), 644–655 (2009)

    Article  Google Scholar 

  67. Zhang, C., Hammad, A.: Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. Adv. Eng. Inf. 26(2), 396–410 (2012)

    Article  Google Scholar 

  68. Zhou, W., Whyte, J., Sacks, R.: Construction safety and digital design: a review. Autom. Constr. 22, 102–111 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shih-Chung Kang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Kang, S. & Lee, M. RAS: a robotic assembly system for steel structure erection and assembly. Int J Intell Robot Appl 1, 459–476 (2017). https://doi.org/10.1007/s41315-017-0030-x

Download citation

Keywords

  • Steel beam assembly
  • Construction robotics
  • Construction safety
  • Auto joint
  • Rotation method