Advertisement

RAS: a robotic assembly system for steel structure erection and assembly

  • Ci-Jyun Liang
  • Shih-Chung KangEmail author
  • Meng-Hsueh Lee
Regular Paper

Abstract

This research focuses on a long-standing, yet critical problem in the erection of steel structures. In the current state of practice, steel workers must stand on an unfinished structure to assist with the assembly of structural elements manually. They must pull on the wire hanging under the rigging elements to align the bolting holes of the moving and fixed elements. This work is often performed in high places, which can be very risky. Therefore, we have developed a robotic assembly system (RAS) for steel beam erection and assembly to prevent workers from having to work in a high place. The RAS consists of four methods: rotation, alignment, bolting, and unloading. The rotation method involves a flywheel installed on top of the rigging beam, which aims to rotate the beam to the assembly angle. The alignment method includes both vertical and horizontal alignment. The vertical alignment relies on a camera and a marker on the column to align the beam altitude. The horizontal alignment relies on a specially-designed beam, which allows for it to be smoothly guided into the right position. The bolting method is used to connect the beam to a fixed element. We designed an additional guide hole above each bolt hole. The bolt can be inserted in the guide hole and slid to the bolt hole. The unloading method is used to unload the crane cable and the RAS. We use a pin mechanism for the beam-hook connection so it can easily be unplugged by a motor. The system is built in a scaled experimental construction site to validate its feasibility. The results show that the RAS can operate the assembly process without humans working at risky heights, and can complete faster than the traditional method. In conclusion, we have developed a robotics assembly system that can help reduce the frequency of accidental falls during the steel beam assembly process. The RAS adheres to the process of the current erection method and can be broadly introduced to existing construction sites.

Keywords

Steel beam assembly Construction robotics Construction safety Auto joint Rotation method 

References

  1. Beavers, J.E., Moore, J.R., Schriver, W.R.: Steel erection fatalities in the construction industry. J. Constr. Eng. Manag. 135(3), 227–234 (2009)CrossRefGoogle Scholar
  2. Bijlaard, F.S.K., Coelho, A.M.G.O., Magalhães, V.J.D.A.: Innovative joints in steel construction. Steel Constr. 2(4), 243–247 (2009)CrossRefGoogle Scholar
  3. Bock, T., Linner, T.: Construction robots: elementary technologies and single-task construction robots. Cambridge University Press (2016a)Google Scholar
  4. Bock, T., Linner, T.: Site automation: automated/robotic on-site factories. Cambridge University Press (2016b)Google Scholar
  5. Brown, M.: Advanced digital photography. Media Publishing Pvt, Limited, Australia (2004)Google Scholar
  6. CM Lab: Vortex Master. http://www.cm-labs.com/market/construction/products/vortex-master (2015). Accessed 10 Apr 2017
  7. Chang, Y.-C., Hung, W.-H., Kang, S.-C.: A fast path planning method for single and dual crane erections. Autom. Constr. 22, 468–480 (2012)CrossRefGoogle Scholar
  8. Cheng, T., Teizer, J.: Modeling tower crane operator visibility to minimize the risk of limited situational awareness. J. Comput. Civ. Eng. 28(3), 04014004 (2014)CrossRefGoogle Scholar
  9. Chi, H.-L., Chen, Y.-C., Kang, S.-C., Hsieh, S.-H.: Development of user interface for tele-operated cranes. Adv. Eng. Inf. 26(3), 641–652 (2012)CrossRefGoogle Scholar
  10. Chi, H.-L., Kang, S.-C.: A physics-based simulation approach for cooperative erection activities. Autom. Constr. 19(6), 750–761 (2010)CrossRefGoogle Scholar
  11. Chin, S., Yoon, S., Kim, Y.-S., Ryu, J., Choi, C., Cho, C.-Y.: Realtime 4D CAD + RFID for project progress management. Construction Research Congress (CRC): broadening perspectives, San Diego, California. 331–340 (2005)Google Scholar
  12. Chu, B., Jung, K., Lim, M.-T., Hong, D.: Robot-based construction automation: an application to steel beam assembly (Part I). Autom. Constr. 32, 46–61 (2013)CrossRefGoogle Scholar
  13. ConXtech: ConX system. http://www.conxtech.com/conx-system/ (2015). Accessed 10 Apr 2017
  14. Feng, C., Kamat, V.R.: Plane registration leveraged by global constraints for context-aware AEC application. Aided Civ. Infrastruct. Eng. 28, 325–343 (2013)CrossRefGoogle Scholar
  15. Feng, C., Xiao, Y., Willette, A., McGee, W., Kamat, V.R.: Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites. Autom. Constr. 59, 128–138 (2015)CrossRefGoogle Scholar
  16. GHI Electronics LLC:.NET Gadgeteer. https://www.ghielectronics.com/catalog/category/265 (2014). Accessed 10 Apr 2017
  17. Gajamohan, M., Merz, M., Thommen, I., D’Andrea, R.: The cubli: a cube that can jump up and balance. International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal. pp. 3722–3727 (2012)Google Scholar
  18. Gambao, E., Balaguer, C., Gebhart, F.: Robot assembly system for computer-integrated construction. Autom. Constr. 9(5–6), 479–487 (2000)CrossRefGoogle Scholar
  19. Gams, A., Zlajpah, L., Lenarcic, J.: Imitating human acceleration of a gyroscopic device. Robotica 25(04), 501–509 (2007)CrossRefGoogle Scholar
  20. Garg, A., Kamat, V.R.: Virtual prototyping for robotic fabrication of rebar cages in manufactured concrete construction. J. Archit. Eng. 20(1), 06013002 (2014)CrossRefGoogle Scholar
  21. Huang, J.-Y., Gau, C.-Y.: Modelling and designing a low-cost high-fidelity mobile crane simulator. Int. J. Hum.-Comput. St. 58(2), 151–176 (2003)CrossRefGoogle Scholar
  22. Hung, W.-H., Liu, C.-W., Liang, C.-J., Kang, S.-C.: Strategies to accelerate the computation of erection paths for construction cranes. Autom. Constr. 62, 1–13 (2016)CrossRefGoogle Scholar
  23. Irizarry, J.: Application of methods analysis to steel erection tasks: identification of factors affecting labor performance. Int. J. Constr. Manag. 11(4), 31–47 (2011)Google Scholar
  24. Irizarry, J., Abraham, D.M.: Assessment of risk perception of ironworkers. J. Constr. Res. 7(1/2), 111–132 (2006)CrossRefGoogle Scholar
  25. Juang, J.R., Hung, W.H., Kang, S.C.: SimCrane 3D+: a crane simulator with kinesthetic and stereoscopic vision. Adv. Eng. Inf. 27(4), 506–518 (2013)CrossRefGoogle Scholar
  26. Jung, K., Chu, B., Hong, D.: Robot-based construction automation: an application to steel beam assembly (Part II). Autom. Constr. 32, 62–79 (2013a)CrossRefGoogle Scholar
  27. Jung, K., Chu, B., Park, S., Hong, D.: An implementation of a teleoperation system for robotic beam assembly in construction. Int. J. Precis. Eng. Manuf. 14(3), 351–358 (2013b)CrossRefGoogle Scholar
  28. Jung, K., Chu, B., Bae, K., Lee, Y., Hong, D., Park, S., Lim, M.-T.: Development of automation system for steel construction based on robotic crane. International Conference on Smart Manufacturing Application, Kintex, Gyeonggi-do, Korea. 486–489 (2008)Google Scholar
  29. KUKA: KR 16 CR v2 technical data, KUKA Robotics Corporation (2005)Google Scholar
  30. Kahane, B., Rosenfeld, Y.: Real-time “sense-and-act” operation for construction robots. Autom. Constr. 13(6), 751–764 (2004)CrossRefGoogle Scholar
  31. Kang, S.-C., Chi, H.-L., Miranda, E.: Three-dimensional simulation and visualization of crane assisted construction erection processes. J. Comput. Civ. Eng. 23(6), 363–371 (2009)CrossRefGoogle Scholar
  32. Kang, S.C., Miranda, E.: Planning and visualization for automated robotic crane erection processes in construction. Autom. Constr. 15(4), 398–414 (2006)CrossRefGoogle Scholar
  33. Kang, S.-C., Miranda, E.: Numerical methods to simulate and visualize detailed crane activities. Comput. Aided Civ Inf. 24(3), 169–185 (2009)CrossRefGoogle Scholar
  34. Kim, D.-W., An, S.-H., Cho, H., Jeong, J.-W., Lee, B.-H., Dohe, N.L., Kang, K.-I.: Development of conceptual model of construction factory for automated construction. Build. Environ. 44(8), 1634–1642 (2009)CrossRefGoogle Scholar
  35. Kim, K., Kim, M.: RFID-based location-sensing system for safety management. Pers. Ubiquit. Comput. 16(3), 235–243 (2012)CrossRefGoogle Scholar
  36. Kim, C.-W., Kim, T., Lee, U.-K., Cho, H., Kang, K.-I.: Advanced steel beam assembly approach for improving safety of structural steel workers. J. Constr. Eng. Manage. 142(4), 05015019 (2016)CrossRefGoogle Scholar
  37. Kuo, T.-Y., Kang, S.-C.: Control of fast crane operation. Autom. Constr. 42, 25–35 (2014)CrossRefGoogle Scholar
  38. LEGO: LEGO Mindstroms. http://www.lego.com/en-us/mindstorms/ (2014). Accessed 10 Apr 2017
  39. Lee, G., Cho, J., Ham, S., Lee, T., Lee, G., Yun, S.-H., Yang, H.-J.: A BIM- and sensor-based tower crane navigation system for blind lifts. Autom. Constr. 26, 1–10 (2012a)CrossRefGoogle Scholar
  40. Lee, C., Lee, G.: Feasibility of beam erection with a motorized hook-block,”. Autom. Constr. 41, 25–32 (2014)CrossRefGoogle Scholar
  41. Lee, G., Lee, G., Lee, T.: Field applicability and feasibility of the automated non-powered multi-beam lifting system. Autom. Constr. 28, 26–35 (2012d)CrossRefGoogle Scholar
  42. Lee, H.-S., Lee, K.-P., Park, M., Baek, Y., Lee, S.: RFID-based real-time locating system for construction safety management. J. Comput. Civ. Eng. 26(3), 366–377 (2012b)CrossRefGoogle Scholar
  43. Lee, C., Lee, G., Park, S., Cho, J.: Analysis of field applicability of the rotation-controllable tower-crane hook block. Autom. Constr. 21, 81–88 (2012c)CrossRefGoogle Scholar
  44. Lei, Z., Taghaddos, H., Hermann, U., Al-Hussein, M.: A methodology for mobile crane lift path checking in heavy industrial projects. Autom. Constr. 31, 41–53 (2013)CrossRefGoogle Scholar
  45. Liang, C.-J., Kang, S.-C.: Development of a steel beam hauling system for automatic steel beam assembly. International Conference on Computing in Civil and Building Engineering (ICCCBE), Orlando, Florida. 1295–1302 (2014)Google Scholar
  46. Lin, K.-C., Jhuang, S.-J., Lin, C.-H.: Study on seismic performance of steel shop-fabricated moment connections, National Center for Research on Earthquake Engineering (2013)Google Scholar
  47. Mo, Y.-H., Kang, T.-K., Zhang, H.-Z., Hong, D.-H., Lim, M.-T.: Development of 3D camera-based robust bolt-hole detection system for bolting cabin. Autom. Constr. 44, 1–11 (2014)CrossRefGoogle Scholar
  48. Nam, H., Choi, W., Ryu, D., Lee, Y., Lee, S.-H., Ryu, B.: Design of a bolting robot for constructing steel structure. International Conference on Control, Automation and Systems, COEX, Seoul, Korea. 1946–1949 (2007)Google Scholar
  49. National Instruments Corporation: LabVIEW system design software. http://www.ni.com/labview/ (2014). Accessed 10 Apr 2017
  50. OMAX Corporation: OMAX 2652 JetMachining® Center. https://www.omax.com/omax-machine/2652 (2016). Accessed 10 Apr 2017
  51. Olson, E.: AprilTag: a robust and flexible visual fiducial system. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. (2011)Google Scholar
  52. Park, M.-W., Brilakis, I.: Construction worker detection in video frames for initializing vision trackers. Autom. Constr. 28, 15–25 (2012)CrossRefGoogle Scholar
  53. Pavlovcic, L., Krajnc, A., Beg, D.: Cost function analysis in the structural optimization of steel frames. Struct. Multidiscip. O. 28(4), 286–295 (2004)CrossRefGoogle Scholar
  54. Peurifoy, R. L., Schexnayder, C. J., Shapira, A., Schmitt, R. L.: Construction planning, equipment, and methods, McGraw-Hill, New York (2011)Google Scholar
  55. Pitsco Education: TETRIX®. http://www.tetrixrobotics.com/ (2014). Accessed 10 Apr 2017
  56. Ray, S.J., Teizer, J.: Coarse head pose estimation of construction equipment operators to formulate dynamic blind spots. Adv. Eng. Inf. 26(1), 117–130 (2012)CrossRefGoogle Scholar
  57. Saidi, K.S., Bunch, R., Lytle, A. M., Proctor F.: Development of a real-time control system architecture for automated steel construction. 23th International Symposium on Automation and Robotics in Construction (ISARC), Tokyo, Japan, 412–417 (2006)Google Scholar
  58. Teizer, J., Cheng, T., Fang, Y.: Location tracking and data visualization technology to advance construction ironworkers’ education and training in safety and productivity. Autom. Constr. 35, 53–68 (2013)CrossRefGoogle Scholar
  59. The Steel Construction Institute: Quicon® design guide to BS 5950-1. http://www.newsteelconstruction.com/wp/quicon-design-guide-to-bs-5950-1/ (2004). Accessed 10 Apr 2017
  60. Vijay, V., Sen, R.N., Richardson, S.: Risk perception of structural steel erection workers in Malaysia—Ergonomic implications for occupational safety and health. International Symposium on Past, Present and Future Ergonomics, Occupational Safety and Health, Bali, Indonesia. pp. 100–105 (2006)Google Scholar
  61. Viscomi, V.B., Michalerya, W.D., Lu, L.-W.: Automated construction in the ATLSS integrated building systems. Autom. Constr. 3(1), 35–43 (1994)CrossRefGoogle Scholar
  62. Volk, R., Stengel, J., Schultmann, F.: Building Information Modeling (BIM) for existing buildings—literature review and future needs. Autom. Constr. 38, 109–127 (2014)CrossRefGoogle Scholar
  63. Wakisaka, T., Furuya, N., Inoue, Y., Shiokawa, T.: Automated construction system for high-rise reinforced concrete buildings. Autom. Constr. 9(3), 229–250 (2000)CrossRefGoogle Scholar
  64. Wang, X., Zhang, Y.Y., Wu, D., Gao, S.D.: Collision-free path planning for mobile cranes based on ant colony algorithm. Key Eng. Mat. 467–469, 1108–1115 (2011)CrossRefGoogle Scholar
  65. Yoo, W.S., Lee, H.-J., Kim, D.-I., Kang, K.-I., Cho, H.: Genetic algorithm-based steel erection planning model for a construction automation system. Autom. Constr. 24, 30–39 (2012)CrossRefGoogle Scholar
  66. Yu, S.-N., Ryu, B.-G., Lim, S.-J., Kim, C.-J., Kang, M.-K., Han, C.-S.: Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization. Autom. Constr. 18(5), 644–655 (2009)CrossRefGoogle Scholar
  67. Zhang, C., Hammad, A.: Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. Adv. Eng. Inf. 26(2), 396–410 (2012)CrossRefGoogle Scholar
  68. Zhou, W., Whyte, J., Sacks, R.: Construction safety and digital design: a review. Autom. Constr. 22, 102–111 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ci-Jyun Liang
    • 1
  • Shih-Chung Kang
    • 1
    Email author
  • Meng-Hsueh Lee
    • 1
  1. 1.Department of Civil EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations