Design and control of a 3-chambered fiber reinforced soft actuator with off-the-shelf stretch sensors

  • Pham Huy Nguyen
  • Saivimal Sridar
  • Wenlong Zhang
  • Panagiotis PolygerinosEmail author
Regular Paper


The necessity for efficient control of soft actuators has recently resulted in the development of complex physical models that are actuator geometry and material type dependent. In this paper, we address the ability to do closed-loop control with a simplified model independent of material properties and material characteristics of a soft robotic system. We demonstrate this by using a P-controller on a new 3-chambered, fiber-reinforced elastomeric actuator (3CA) that utilizes off-the-shelf stretch sensors. A motion capture system is used to calibrate and generate two different quasi-static models (a general linear regression model and an input dependent model) that map the varying chamber pressure readings with the actuator’s end effector position, effectively represented by the stretch sensor curvature. Simulations using a closed-loop controller, with both models, provide further insight on the quality of the models and corresponding control performance. We use this information in an experimental study that yields comparable performances to the simulated results. Moreover, we demonstrate that the input-dependent model based controller can provide better results than that of the general model based controller. Finally, we demonstrate that our soft actuator can be closed-loop controlled with off-the-shelf stretch sensors with repeatable results. This opens a way to design new control concepts for multi-chambered actuators that can produce more complex motions in the future.


Soft actuator Soft robot Soft sensor Linear regression model Input dependent model Control 


  1. Adafruit: Conductive rubber cord stretch sensor [Online]. Available:
  2. Agarwal, G., Besuchet, N., Audergon, B., Paik, J.: Stretchable materials for robust soft actuators towards assistive wearable devices. Sci. Rep. 6, 34224 (2016)CrossRefGoogle Scholar
  3. Asbeck, A.T., Schmidt, K., Galiana, I., Wagner, D., Walsh, C.J.: Multi-joint soft exosuit for gait assistance. In: IEEE International Conference on Robotics and Automation, pp. 6197–6204 (2015)Google Scholar
  4. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schaffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, G., Grunwald, A., et al.: The KUKA-DLR Lightweight Robot arm—a new reference platform for robotics research and manufacturing. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics, pp. 1–8 (2010)Google Scholar
  5. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: rom the Cover: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 107(44), 18809–18814 (2010)CrossRefGoogle Scholar
  6. Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., Dario, P., Laschi, C.: Design and development of a soft robot with crawling and grasping capabilities. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4950–4955 (2012)Google Scholar
  7. Chinimilli, P., Wachtel, S., Polygerinos, P., Zhang, W.: Hysteresis compensation for ground contact force measurement with shoe-embedded air pressure sensors. In: ASME Dynamic Systems and Control Conference (DSSC), p. 9920 (2016)Google Scholar
  8. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Member, S., Menciassi, A.: STIFF-FLOP Surgical Manipulator: mechanical design and experimental characterization of the single module. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3576–3581 (2013)Google Scholar
  9. Firouzeh, A., Salerno, M., Paik, J.: Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF Actuation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1117–1124 (2015)Google Scholar
  10. Fitzgerald, C.: Developing baxter. In: IEEE Conference on Technologies for Practical Robot Applications (TePRA) (2013)Google Scholar
  11. Gafford, J., Ding, Y., Harris, A., McKenna, T., Polygerinos, P., Holland, D., Moser, A., Walsh, C.J.: Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper. In: ASME Design of Medical Devices Conference (2014)Google Scholar
  12. Galiana, I., Member, S., Iii, F.L.H., Howe, R.D., Popovic, M.B., Hammond, F.L., Howe, R.D., Popovic, M.B.: Wearable soft robotic device for post-stroke shoulder rehabilitation: identifying misalignments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October, pp. 317–322 (2012)Google Scholar
  13. Galloway, K.C., Polygerinos, P., Walsh, C.J., Wood, R.J.: Mechanically programmable bend radius for fiber-reinforced soft actuators. In: 2013 16th International Conference on Advanced Robotics, ICAR (2013)Google Scholar
  14. Haines, C.S., Lima, M.D., Li, N., Spinks, G.M., Foroughi, J., Madden, J.D., Kim, S.H.J., Fang, S., Jung de Andrade, M., Goktepe, F., Goktepe, O., Mirvakili, S.M., Naficy, S., Lepro, X., Oh, J., Kozlov, M.E., Kim, S.H.J., Xu, X., Swedlove, B.J., Wallace, G.G., Baughman, R.H.: Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014)CrossRefGoogle Scholar
  15. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Haptic Identification of Objects using a Modular Soft Robotic Gripper. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, September, pp. 1698–1705 (2015)Google Scholar
  16. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. Int. Ed. 50(8), 1890–1895 (2011)CrossRefGoogle Scholar
  17. Kadowaki, Y., Noritsugu, T., Takaiwa, M., Sasaki, D., Kato, M.: Development of soft power-assist glove and control based on human intent. J. Robot. Mechatron. 23(2), 281–291 (2011)CrossRefGoogle Scholar
  18. Lin, H.-T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 26007 (2011)CrossRefGoogle Scholar
  19. Luo, M., Skorina, E.H., Tao, W., Chen, F., Onal, C.D.: Optimized design of a rigid kinematic module for antagonistic soft actuation. In: IEEE Conference on Technologies for Practical Robot Applications, TePRA, August (2015)Google Scholar
  20. Marchese, A.D., Rus, D.: Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Rob. Res. 35, 840–869 (2015)CrossRefGoogle Scholar
  21. Marchese, A.D., Onal, C.D., Rus, D.: Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1(1), 75–87 (2014)CrossRefGoogle Scholar
  22. McMahan, W., Jones, B.A., Walker, I.D.: Design and implementation of a multi-section continuum robot: air-octor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, January, pp. 3345–3352 (2005)Google Scholar
  23. Menguc, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J.: Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res. 33(14), 1748–1764 (2014)CrossRefGoogle Scholar
  24. Morin, S.A., Shepherd, R.F., Kwok, S.W., Stokes, A.A., Nemiroski, A., Whitesides, G.M.: Camouflage and display for soft machines. Science 337(6096), 828–832 (2012)CrossRefGoogle Scholar
  25. Moseley, P., Florez, J.M., Sonar, H.A., Agarwal, G., Curtin, W., Paik, J.: Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)CrossRefGoogle Scholar
  26. Park, Y.-L., Chen, B., Pérez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfield, E.C., Nagpal, R.: Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir. Biomim. 9(1), 16007 (2014)CrossRefGoogle Scholar
  27. Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J.: EMG controlled soft robotic glove for assistance during activities of daily living. In: 2015 IEEE International Conference on Rehabilitative Robotics, August, pp. 55–60 (2015)Google Scholar
  28. Polygerinos, P., Wang, Z., Galloway, K., Overvelde, B., Wood, R.: Soft elastomeric actuators with fiber reinforcement. In: Materials and Research Society, p. 2 (2013)Google Scholar
  29. Polygerinos, P., Wang, Z., Overvelde, J.T.B., Galloway, K.C., Wood, R.J., Bertoldi, K., Walsh, C.J.: Modeling of soft fiber-reinforced bending actuators. IEEE Trans. Robot. 31(3), 778–789 (2015)CrossRefGoogle Scholar
  30. Ramezani, A., Chung, S.-J., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Robot. 2(3), eaal2505 (2017)CrossRefGoogle Scholar
  31. Roche, E.T., Fabozzo, A., Lee, Y., Polygerinos, P., Friehs, I., Schuster, L., Whyte, W., Casar Berazaluce, A.M., Bueno, A., Lang, N., Pereira, M.J.N., Feins, E., Wasserman, S., O’Cearbhaill, E.D., Vasilyev, N.V., Mooney, D.J., Karp, J.M., del Nido, P.J., Walsh, C.J.: A light-reflecting balloon catheter for atraumatic tissue defect repair. Sci. Transl. Med. 7(306), 306–349 (2015)CrossRefGoogle Scholar
  32. Skorina, E.H., Tao, W., Chen, F., Luo, M., Onal, C.D.: Motion control of a soft-actuated modular manipulator. In: 2016 IEEE International Conference on Robotics and Automation, May, pp. 4997–5002 (2016)Google Scholar
  33. Sridar, S., Majeika, C.J., Schaffer, P., Bowers, M., Ueda, S., Barth, A.J., Sorrells, J.L., Wu, J.T., Hunt, T.R., Popovic, M.: Hydro muscle—a novel soft fluidic actuator. In: 2016 IEEE International Conference on Robotics and Automation, pp. 4014–4021 (2016)Google Scholar
  34. Subramanyam, K., Rogers, E., Kulesza, M., Holland, D., Gafford, J., Goldfield, E., Walsh, C.: Soft wearable orthotic device for assisting kicking motion in developmentally delayed infants. J. Med. Device 9(3), 30913 (2015)CrossRefGoogle Scholar
  35. Suzumori, K., Endo, S., Kanda, T., Kato, N., Suzuki, H.: A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, April, pp. 4975–4980 (2007)Google Scholar
  36. Svetozarevic, B., Hofer, J., Jacob, D., Begle, M., Chatzi, E., Nagy, Z., Hofer, J., Jacob, D., Begle, M., Chatzi, E., Schlueter, A.: SoRo-Track: a two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. In: 2016 IEEE International Conference on Robotics and Automation, May, pp. 4945–4950 (2016)Google Scholar
  37. Tolley, M.T., Shepherd, R.F., Karpelson, M., Bartlett, N.W., Galloway, K.C., Wehner, M., Nunes, R., Whitesides, G.M., Wood, R.J.: An untethered jumping soft robot. In: IEEE International Conference on Intelligent Robots and Systems, pp. 561–566 (2014)Google Scholar

Copyright information

© Springer Singapore 2017

Authors and Affiliations

  • Pham Huy Nguyen
    • 1
  • Saivimal Sridar
    • 1
  • Wenlong Zhang
    • 1
  • Panagiotis Polygerinos
    • 1
    Email author
  1. 1.The Polytechnic School, Ira A. Fulton Schools of EngineeringArizona State UniversityMesaUSA

Personalised recommendations