Skip to main content

Advertisement

Log in

A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Reported is realization of a novel ionic electro-active biomimetic soft robotic polymer metal nanocomposite known as poly (ethylene-co-methacrylic acid) metal composite (called EMAMC in this paper) capable of functioning as soft robotic biomimetic actuators, energy harvesters and sensors. By soft robotic it is meant that these materials are easily deformable soft plastics like an elephant trunk. Further reported is the manufacturing methodology of the novel multi-functional electroactive polymer metal nanocomposite EMAMC. The electro-less chemical plating is performed by a chemical REDOX operation on poly (ethylene-co-methacrylic acid) or (PEMAA) ionomer with a metal. PEMAA is a commercially available ionomer commercially known as Surlyn® by DuPont and used for manufacturing golf balls. Surlyn® is a copolymer of ethylene and methacrylic acid groups and is partially neutralized with Na+ ions. To increase the ion exchange capability of Surlyn® the polymer is subjected to a chemical hydrolysis in potassium and sodium hydroxides (KOH, NaOH) and dimethyl sulfoxide (DMSO). This procedure is followed by a chemical REDOX procedure in which PEMAA is first oxidized in a metallic salt solution followed and then reduced in a lithium and sodium borohydride solutions to deposit metallic nanoparticles near boundaries and on the surfaces of hydrolyzed Surlyn®. This REDOX operation creates highly conductive electrodes on and near boundary surfaces. It is then observed that application of a low voltage across the EMAMC causes it to deform softly (actuation mode) with a significant force density and soft bending and deforming the EMAMC will generate electricity (energy harvesting and sensing modes). The preliminary results of actuation and sensing of the EMAMC are reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adolf, D., Shahinpoor, M., Segalman, D., Witkowsky, W.: Electrically controlled polymeric gel actuators (world’s first patent on synthetic artificial muscles), US Patent Office, US Patent No. 5,250,167, Issued October, 5 (1993)

  • Bahramzadeh, Y., Shahinpoor, M.: Charge modeling of ionic polymer-metal composites for dynamic curvature sensing. In: Proceeding of SPIE 18th Annual International Symposium on Smart Structures and Materials, SPIE 7676-79766-10 March, 2011, San Diego, California, SPIE 79754–79761 (2011)

  • Bahramzadeh, Y., Shahinpoor, M.: Modeling of IPMC guide wire stirrer in endovascular surgery. In: Rassmussen, L. (ed) Chapter 2, Electroactivity in polymeric materials. Springer Publications, New York 20(9) 094011 (2012)

  • Cha, Y., Abdolhamidi, S., Porfiri, M.: Energy harvesting from underwater vibration of an annular ionic polymer metal composite. Meccanica 50(11), 2675–2690 (2015)

    Article  Google Scholar 

  • Chen, Z., Tan, X., Will, A., Ziel, C.: A dynamic model for ionic polymer–metal composite sensors. Smart Mater. Struct. 16, 1477 (2007)

    Article  Google Scholar 

  • de Gennes, P.G., Okumura, K., Shahinpoor, M., Kim, K.J.: Mechanoelectric Effects in Ionic Gels. Europhys. Lett. 50(4), 513–518 (2000)

    Article  Google Scholar 

  • Duncan, A.J., Leo, D.J., Long, T.E.: Beyond Nafion: charged macromolecules tailored for performance as ionic polymer transducers. Macromolecules 41(21), 7765–7775 (2008)

    Article  Google Scholar 

  • Hatipoglu, G., Liu, Y., Zhao, R., Yoonessi, M., Tigelaar, D.M., Tadigadapa, S., Zhang, Q.M.: A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators. Smart Mater. Struct. 21, 5 (2012)

    Article  Google Scholar 

  • Holden, G., Kricheldorf, H.R., Quirk, R.P.: Thermoplastic elastomers, 3rd edn, p. 265. Hanser-Gardner publishing company, Munchen (2004a)

    Google Scholar 

  • Holden, G., Kricheldorf, H.R., Quirk, R.P.: Thermoplastic elastomers, 3rd edn, p. 265. Hanser-Gardner publishing company, Munchen (2004b)

    Google Scholar 

  • Kalista, S.J., Jr.: Self-healing of thermoplastic poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. M.Sc. Thesis, Virgina Polytechnic Institute and State University, Engineering Mechanics, Blacksburg, Virginia, September 1 (2003)

  • Kalista, S.J., Jr.: Self-healing of thermoplastic poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. MSc. Thesis, Virginia Polytechnic Institute and State University, Mechanical Engineering (2003)

  • Kim, K.J., Shahinpoor, M.: Ionic polymer-metal composites—II. Manufacturing techniques. Smart Mater. Struct. (SMS), Institute of Physics Publication 12(1), 65–79 (2003)

  • Kim, K.J., Shahinpoor, M.: A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMC’s) biomimetic sensors, actuators and artificial muscle. Polymer 43(3), 797–802 (2002)

    Article  Google Scholar 

  • Kreuer, K.D.: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Mem. Sci. 185, 29 (2001)

    Article  Google Scholar 

  • Mahler, J., Persson, I.: Study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012(51), 425–438 (2012)

    Article  Google Scholar 

  • McLean, R.S., Doyle, M., Sauer, B.B.: High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules 33, 6541 (2000a)

    Article  Google Scholar 

  • McLean, R.S., Doyle, M., Sauer, B.B.: High-resolution imaging of ionic domains and crystal morphology in ionomers using AFM techniques. Macromolecules 33, 6541 (2000b)

    Article  Google Scholar 

  • Otocka, E., Kwei, T.: Properties of ethylene-acrylic acid copolymers. Macromolecules 1, 244 (1968)

    Article  Google Scholar 

  • Persson, I.: Hydrated metal ions in aqueous solution: how regular are their structures. Pure Appl. Chem. 82(10), 1901–1917 (2010)

    Article  Google Scholar 

  • Pingkarawat, K., Dell’Oliob, C., Varleyb, R.J., Mouritza, A.P.: Poly(ethylene-co-methacrylic acid) (EMAA) as an efficient healing agent for high performance epoxy networks using diglycidyl ether of bisphenol A (DGEBA), Polymer 92, 153–163 (2016)

  • Porfiri, M.: Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104, 104915 (2008)

    Article  Google Scholar 

  • Sauer, B.B., McLean, R.S.: AFM and X-ray studies of crystal and ionic domain morphology in poly(ethylene-co-methacrylic acid) ionomers. Macromolecules 33, 7939 (2000a)

    Article  Google Scholar 

  • Sauer, B.B., McLean, R.S.: AFM and X-ray studies of crystal and ionic domain morphology in poly(ethylene-co-methacrylic acid) ionomers. Macromolecules 33, 7939 (2000b)

    Article  Google Scholar 

  • Seitz, E., Chan, C.D., Opper, K.L., Baughman, T.W., Wagener, K.B., Winey, K.I.: Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J. Am. Chem. Soc. 132, 8165 (2010a)

    Article  Google Scholar 

  • Seitz, E., Chan, C.D., Opper, K.L., Baughman, T.W., Wagener, K.B., Winey, K.I.: Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J. Am. Chem. Soc. 132, 8165 (2010b)

    Article  Google Scholar 

  • Shahinpoor, M.: Spring-loaded ionic polymeric gel linear actuator. US Patent Office, US Patent No. 5,389,222, Issued February 14 (1995)

  • Shahinpoor, M.: Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim. Acta 48(14–16), 2343–2353 (2003)

    Article  Google Scholar 

  • Shahinpoor, M.: Soft plastic robots and artificial muscles. Int. J. Adv. Robot. Syst. 2(2), 161–174 (2005)

    Article  Google Scholar 

  • Shahinpoor, M.: Muscular biopolymers. In: Lakhtakia, A., Martin-Palma, R.-J. (eds.) Topics in engineered biomimecry: biomimetics, bioinspiration and bioreplication. Elsevier publishers, Waltham (2012)

    Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites—I. Fundamentals, (review paper). Smart Mater. Struct. Int. J. 10(4), 819–833 (2001)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: A solid-state soft actuator exhibiting large electromechanical effect. Appl. Phys. Lett. (APL) 80(18), 3445–3447 (2002)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites—III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles (review paper). Smart Mater. Struct. Int. J. 13(4), 1362–1388 (2004)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites—IV. Industrial and medical applications (review paper). Smart Mater. Struct. Int. J. 14(1), 197–214 (2005)

    Article  Google Scholar 

  • Shahinpoor, M., Mojarrad, M.: Soft actuators and artificial muscles. US Patent Office, United States Patent 6,109,852, Issued August 29 (2000)

  • Shahinpoor, M., Mojarrad, M.: Ionic polymer sensors and actuators. US Patent Office, No. 6,475,639, Issued November 5 (2002)

  • Shahinpoor, M., Bar-Cohen, Y., Simpson, J., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: a review. Smart Mater. Struct. 7, R15–R30 (1998)

    Article  Google Scholar 

  • Shahinpoor, M., Bar-Cohen, Y., Simpson, J., Smith, J.: Ionic polymer-metal composites (IPMC’s) as biomimetic sensors and actuators, book chapter 3. In: Khan, I.M., Harrison, J.S. (eds) Field-responsive polymers, American Chemical Society Publication, ACS-FRP, ACS Symposium Series 726, pp. 25–50. Oxford University Press (1999)

  • Singhbhatti, M.: Method of making a hybrid metal-plastic heat exchanger. US Patent Office: US 2010/0043230 A1

  • Spencer, M.W., Wetzel, M.D., Troeltzsch, C., Paul, D.R.: Effects of acid neutralization on the properties of K and Na poly(ethylene-co-methacrylic acid) ionomers. Polymer 53, 569–580 (2011)

    Article  Google Scholar 

  • Taubert, A., Winey, K.I.: Imaging and X-ray microanalysis of a poly(ethylene-ran-methacrylic acid) ionomer melt neutralized with sodium. Macromolecules 35, 7419 (2002a)

    Article  Google Scholar 

  • Taubert, A., Winey, K.I.: Imaging and X-ray microanalysis of a poly(ethylene-ran-methacrylic acid) ionomer melt neutralized with sodium. Macromolecules 35, 7419 (2002b)

    Article  Google Scholar 

  • Tiwari, R., Kim, K.J.: Disc-shaped IPMC for use in energy harvesting. Proc. SPIE 7289, Behav. Mech. Multifunct. Mater. Compos. 72891G (2009). doi:10.1117/12.816100

  • Tiwari, R., Kim, K.J.: IPMC as a mechanoelectric energy harvester: tailored properties. IOP Publishing Ltd, Smart Mater. Struct. Int. J. 22(1), 015017 (2013)

  • Wakabayashi, K., Register, R.A.: Micromechanical interpretation of the modulus of ethylene–(meth)acrylic acid copolymers. Polymer 46, 8838 (2005)

    Article  Google Scholar 

  • Walters, R.M., Sohn, K.E., Winey, K.I., Composto, R.J.: Local acid environment in poly(ethylene-ran-methacrylic acid) ionomers. J. Polym. Sci. Part B Polym. Phys. 41, 2833 (2002a)

    Article  Google Scholar 

  • Walters, R.M., Sohn, K.E., Winey, K.I., Composto, R.J.: Local acid environment in poly(ethylene-ran-methacrylic acid) ionomers. J. Polym. Sci. Part B Polym. Phys. 41, 2833 (2002b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahinpoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahi, A., Bahramzadeh, Y., Tabatabaie, S.E. et al. A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite. Int J Intell Robot Appl 1, 143–156 (2017). https://doi.org/10.1007/s41315-017-0013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0013-y

Keywords

Navigation