Bilateral control of functional electrical stimulation and robotics-based telerehabilitation


Currently, a telerehabilitation system includes a therapist and a patient where the therapist interacts with the patient, typically via a verbal and visual communication, for assessment and supervision of rehabilitation interventions. This mechanism often fails to provide physical assistance, which is a modus operandi during physical therapy or occupational therapy. Incorporating an actuation modality such as functional electrical stimulation (FES) or a robot at the patient’s end that can be controlled by a therapist remotely to provide therapy or to assess and measure rehabilitation outcomes can significantly transform current telerehabilitation technology. In this paper, a position-synchronization controller is derived for FES-based telerehabilitation to provide physical assistance that can be controlled remotely. The newly derived controller synchronizes an FES-driven human limb with a remote physical therapist’s robotic manipulator despite constant bilateral communication delays. The control design overcomes a major stability analysis challenge: the unknown and unstructured nonlinearities in the FES-driven musculoskeletal dynamics. To address this challenge, the nonlinear muscle model was estimated through two neural network functions that approximated unstructured nonlinearities and an adaptive control law for structured nonlinearities with online update laws. A Lyapunov-based stability analysis was used to prove the globally uniformly ultimately bounded tracking performance. The performance of the state synchronization controller was validated through experiments on an able-bodied subject. Specifically, we demonstrated bilateral control of FES-elicited leg extension and a human-operated robotic manipulator. The controller was shown to effectively synchronize the system despite unknown and different delays in the forward and backward channels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Ajoudani, A., Erfanian, A.: A neuro-sliding-mode control with adaptive modeling of uncertainty for control of movement in paralyzed limbs using functional electrical stimulation. IEEE Trans. Biomed. Eng. 56(7), 1771–1780 (2009)

    Article  Google Scholar 

  2. Alibeji, N., Kirsch, N., Farrokhi, S., Sharma, N.: Further results on predictor-based control of neuromuscular electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. (2015)

  3. Alibeji, N.A., Kirsch, N.A., Sethi, A., Sharma, N.: A state synchronization controller for functional electrical stimulation-based telerehabilitation. In: ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, pp. V003T43A004–V003T43A004 (2014)

  4. Alibeji, N., Kirsch, N., Sharma, N.: Control of functional electrical stimulation in the presence of electromechanical and communication delays. In: 6th International IEEE/EMBS Conference on NER, pp. 299–302 (2013)

  5. Carignan, C., Krebs, H.: Telerehabilitation robotics: bright lights, big future? J. Rehabil. Res. Develop. 43, 695–710 (2006)

    Article  Google Scholar 

  6. Chen, M., Ge, S.S., How, B.V.E.: Robust adaptive neural network control for a class of uncertain mimo nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  7. Cheng, T., Wang, Q., Kamalapurkar, R., Dinh, H., Bellman, M., Dixon, W.: Identification-based closed-loop NMES limb tracking with amplitude-modulated control input. IEEE Trans. Cybern. (Accepted) (2015)

  8. Chopra, N., Spong, M., Ortega, R., Barabanov, N.: On tracking performance in bilateral teleoperation. IEEE Trans. Robot. 22(4), 861–866 (2006)

    Article  Google Scholar 

  9. Chopra, N., Spong, M., Ortega, R., Barabanov, N.: On position tracking in bilateral teleoperation. In: Proceedings of the 2004 American Control Conference, vol. 6 (pp. 5244–5249) (2004)

  10. Chopra, N., Spong, M., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)

  11. Chopra, N., Berestesky, P., Spong, M.: Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Syst. Technol. 16(2), 304–313 (2008)

  12. Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.: Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach. Birkhäuser Boston (2003)

  13. Durfee, W.K., Savard, L., Weinstein, S.: Technical feasibility of teleassessments for rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 23–29 (2007)

    Article  Google Scholar 

  14. Gao, F., Zhang, L.-Q.: Altered contractile properties of the gastrocnemius muscle poststroke. J. Appl. Physiol. 105(6), 1802–1808 (2008)

    Article  Google Scholar 

  15. Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Blaha, M.J., Dai, S., Ford, E.S., Fox, C.S., Franco, S.: et al. Heart disease and stroke statistics-2014 update. Circulation 129(3) (2014)

  16. Gray, V., Rice, C.L., Garland, S.J.: Factors that influence muscle weakness following stroke and their clinical implications: a critical review. Physiother. Can. 64(4), 415–426 (2012)

    Article  Google Scholar 

  17. Gregory, P., Alexander, J., Satinsky, J.: 3(7), 647–656 (2011)

  18. Hermann, V.H., Herzog, M., Jordan, R., Hofherr, M., Levine, P., Page, S.: Telerehabilitation and electrical stimulation: an occupation-based, client-centered stroke intervention. Am. J. Occup. Ther. 64(1), 73–81 (2010)

    Article  Google Scholar 

  19. Huijgen, B.C., Vollenbroek-Hutten, M.M., Zampolini, M., Opisso, E., Bernabeu, M., Van Nieuwenhoven, J., Ilsbroukx, S., Magni, R., Giacomozzi, C., Marcellari, V., et al.: Feasibility of a home-based telerehabilitation system compared to usual care: arm/hand function in patients with stroke, traumatic brain injury and multiple sclerosis. J. Telemed. Telecare 14(5), 249–256 (2008)

  20. Jezernik, S., Wassink, R.G., Keller, T.: Sliding mode closed-loop control of FES controlling the shank movement. IEEE Trans. Biomed. Eng 51(2), 263–272 (2004)

    Article  Google Scholar 

  21. Khalil, H.: Nonlinear Systems, 3rd ed. Prentice Hall (2002)

  22. Kitamura, T., Sakaino, S., Tsuji, T.: Bilateral control using functional electrical stimulation. In: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, pp. 002 336–002 341 (2015)

  23. Kowalczewski, J., Chong, S.L., Galea, M., Prochazka, A.: In-home tele-rehabilitation improves tetraplegic hand function. Neurorehab. Neural. Re. 25(5), 412–422 (2011)

    Article  Google Scholar 

  24. Kwakkel, G., Kollen, B.J., van der Grond, J., Prevo, A.J.: Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke 34(9), 2181–2186 (2003)

    Article  Google Scholar 

  25. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot manipulator control: theory and practice. CRC Press (2003)

  26. Li, Z., Xia, Y., Su, C.Y.: Intelligent Networked Teleoperation Control. Springer (2015)

  27. Mayo, N.E., Wood-Dauphinee, S., Coöte, R., Durcan, L., Carlton, J.: Activity, participation, and quality of life 6 months poststroke. Arch. Phys. Med. Rehabil. 83(8), 1035–1042 (2002)

    Article  Google Scholar 

  28. Nagai, M.K., Marquez-Chin, C., Popovic, M.R.: Why is functional electrical stimulation therapy capable of restoring motor function following severe injury to the central nervous system? In: Translational Neuroscience (pp. 479–498). Springer (2016)

  29. Peckham, P.H., Knutson, J.S.: Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7, 327–360 (2005)

    Article  Google Scholar 

  30. Popescu, V.G., Burdea, G.C., Bouzit, M., Hentz, V.R.: A virtual-reality-based telerehabilitation system with force feedback. IEEE Trans. Inf. Technol. Biomed. 4(1), 45–51 (2000)

    Article  Google Scholar 

  31. Popovic, M.R.: Masani, K., Micera, S.: Functional Electrical Stimulation Therapy: Recovery of Function Following Spinal Cord Injury and Stroke (pp. 105–121). Springer London, London (2012)

  32. Popović, D., Stein, R., Oğuztöreli, M., Lebiedowska, M., Jonić, S.: Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7(1), 69–79 (1999)

    Article  Google Scholar 

  33. Reinkensmeyer, D.J., Pang, C.T., Nessler, J.A., Painter, C.C.: Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 10(2), 102–108 (2002)

    Article  Google Scholar 

  34. Schauer, T., Negard, N.O., Previdi, F., Hunt, K.J., Fraser, M.H., Ferchland, E., Raisch, J.: Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng. Pract. 13, 1207–1219 (2005)

    Article  Google Scholar 

  35. Sharma, N., Bhasin, S., Wang, Q., Dixon, W.E.: Predictor-based control for an uncertain euler-lagrange system with input delay. Automatica 47(11), 2332–2342 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  36. Sharma, N., Gregory, C., Dixon, W.E.: Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 19(6), 601–611 (2011)

    Article  Google Scholar 

  37. Sharma, N., Gregory, C.M., Johnson, M., Dixon, W.E.: Closed-loop neural network-based NMES control for human limb tracking. IEEE Trans. Control Syst. Technol. 20(3), 712–725 (2012)

    Article  Google Scholar 

  38. Sharma, N., Stegath, K., Gregory, C.M., Dixon, W.E.: Nonlinear neuromuscular electrical stimulation tracking control of a human limb. IEEE Trans. Neural Syst. Rehabil. Eng. 17(6), 576–584 (2009a)

    Article  Google Scholar 

  39. Sharma, N., Patre, P., Gregory, C., Dixon, W.: Nonlinear control of NMES: Incorporating fatigue and calcium dynamics. In: Proceedings of ASME Dynamic Systems and Control Conference. ASME (2009b)

  40. Sharma, N.: A predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation-II. In: Proc. of ACC, pp. 5604–5609 (2012)

  41. Simonsen, D., Irani, R., Nasrollahi, K., Hansen, J., Spaich, E.G., Moeslund, T.B., Andersen, O.K.: Validation and test of a closed-loop tele-rehabilitation system based on functional electrical stimulation and computer vision for analysing facial expressions in stroke patients. In: Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation (pp. pp. 741–750). Springer (2014)

  42. Winter, D.: Biomechanics and motor control of human movement. Wiley (2009)

  43. Zampolini, M., Todeschini, E., Guitart, M., Hermens, H., Ilsbroukx, S., Macellari, V., Magni, R., Rogante, M., Marchese, S., Vollenbroek, M., Giacomozzi, C.: Tele-rehabilitation: present and future. Ann Ist Super Sanita, vol. 44, no. 0021–2571 (Linking), pp. 125–134 (2008)

Download references

Author information



Corresponding author

Correspondence to Nitin Sharma.

Additional information

This work was funded in part by the National Science Foundation award number 1511139.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alibeji, N., Dicianno, B.E. & Sharma, N. Bilateral control of functional electrical stimulation and robotics-based telerehabilitation. Int J Intell Robot Appl 1, 6–18 (2017).

Download citation


  • Human Operator
  • Functional Electrical Stimulation
  • Haptic Feedback
  • Robotic Manipulator
  • Communication Delay