We found that most of the studies of ICR do not address our investigative, public policy-related, interests: carbon balance impact; resource usage at scale; and biophysical impacts at scale. Of the more than 200 papers and reports we reviewed, only about thirty directly address these issues. See Table 3.
Impact on Carbon Balance
In order for a carbon dioxide removal process to achieve either net stasis (prevent new fossil fuel emissions from adding to the stock of atmospheric CO2) or net removal (reduce the stock of atmospheric CO2), the emissions to storage ratio \(\gamma_{{{\text{CO}}_{2} }}\) of the process must be no greater than 1 for the former and below 1 for the latter. Reports on carbon dioxide removal and storage that do not include full life cycle emissions (Fig. 1) or that invoke a “displacement” assumption (discussed below) do not present a complete portrayal of the processes’ emissions. In order to make a valid statement about the usefulness or benefit of a process in terms of collective biophysical need, all emission flows must be accounted for in the evaluation of that process. We found that papers that deem CCS-EOR to be a climate mitigation technique either fail to account for all emissions (i.e., they perform only a partial life cycle analysis) and/or they make an assumption that CCS-EOR-produced oil “displaces” conventionally produced fossil fuel energy. In either case the claim is that the CCS-EOR process produces not a net reduction but only a relative reduction in CO2 emissions compared to conventional fossil fuel energy production. In short, these papers claim that the process reduces CO2 emissions compared to business-as-usual (shown as “CO2 reductive” in Table 3), but the data show that the process actually results in net emissions. Similarly, papers that deem direct air capture to represent mitigation do not meet our criteria for “net removal,” either because a full LCA has not been performed, or an assumption is made that DAC will be powered by renewable energy, which, itself, brings up a host of issues discussed herein but not addressed in most analyses.
Studies That Meet Our Criteria
A frequently cited full LCA study that meets our full LCA standard (Fig. 1) is by Jaramillo et al. (2009). This study found that “between 3.7 and 4.7 metric tons of CO2 are emitted for every metric ton of CO2 injected” underground (i.e., \(\gamma_{{{\text{CO}}_{2} }}\) = 3.7 to 4.7). Other papers that also find the process to be net CO2 additive, or that support or refer to the findings of Jaramillo et al., are as follows: Hovorka and Tinker (2010), Seto and McRae (2011), McCoy (2011), North and Styring (2015), Cuellar-Franca and Azagapic (2015), and Armstrong and Styring (2015), see Table 3. We did not find any paper that disagreed with the results of Jaramillo et al. (2009). Interestingly, even a promotional report advocating CCS-EOR (ScottMadden 2018) acknowledges that the CCS process at the largest CCS power plant project in the U.S. (Petra Nova) is net CO2 additive: “the total impact of the carbon capture system is actually an estimated 2% increase in CO2 emissions.” Also see Mendelevitch (2013) and International Energy Agency (2015) both of which document how carbon accounting schema determine whether the process is found to be CO2 positive or negative.
Note When CO2 is captured directly from the emissions source and is simply injected into subsurface storage—with no EOR—the process might avoid being net additive. However, even without EOR, CCS is thermodynamically inferior to renewable energy production—Sgouris et al. (2019) found “[R]enewable technologies generally provide a better energetic return than CCS.”
Why the Papers That Do Not Meet Our Criteria Fail
Some studies, and many meta-analysis reports on those studies, deem CCS-EORFootnote 8 to be a climate mitigation method. Following are the techniques and assumptions—which differ between point-source capture studies and direct air capture studies—that are employed in making this claim.
Point-source studies
-
(1)
Perform only a partial life cycle analysis, omitting the CO2 released from the energy used during upstream and/or downstream stages of the process; and/or
-
(2)
Invoke an unsupported assumption about energy production “displacement” based on theoretical “demand” theory in economics; and
-
(3)
After having performed a partial LCA or invoked the “displacement” assumption, then present a model that shows “reduced” CO2 emissions relative to conventional oil production, thereby representing climate “mitigation” or “abatement.”
DAC studies
-
(1)
Perform only a partial life cycle analysis; and or
-
(2)
Make an assumption that DAC will be powered by renewable energy sources, ignoring the quantity of energy required to capture and sequester a climate-significant amount of CO2, and ignoring the question of whether a society would decide to use the bulk of its renewable energy for DAC as opposed to using it for directly reducing emissions by powering buildings, transport, etc.
Following is a detailed discussion of each technique.
Partial LCA
Studies that deem CCS-EOR to represent climate mitigation commonly perform a partial life cycle analysis, drawing a “project boundary” that omits parts of the full life cycle—either upstream or downstream emissions or both (see Fig. 2). The choice of boundary is especially important because captured CO2 is primarily used for enhanced oil recovery, and studies that perform a partial LCA often ignore downstream emissions from that use (O, P, and Q in Fig. 2). Faltinson and Gunter (2011) advocate a partial LCA, arguing that CO2-EOR should “not include downstream emissions common to all sources of oil supply.” Researchers define their boundaries differently depending on their research objectives. In some cases, the objective is, in fact, to support “oil production” goals (e.g., Nunez-Lopez et al. 2019). In some studies, the boundary begins at the point that CO2 is purchased, thereby ignoring the emissions from capturing the CO2 at the power plant or other source, and the emissions from transport of the CO2 to the oil well injection site (orange box in Fig. 2), and ends at the completion of the CO2-EOR injection process (M in Fig. 2).
Studies that omit the upstream stage of CO2 sourcing fail to account for the additional CO2 emissions from the energy used to power the capture equipment itself. This is called the “energy penalty” or “efficiency penalty,” and has been estimated at from 10 to 40% (Vasudevan et al. 2016; Oil Change International 2017). (A principal at Global Thermostat claims that their method reduces or eliminates the penalty by using residual heat to power the capture machinery; Chichilnisky 2019).
Omitting emissions from CO2 sourcing and/or from the combustion by consumers of CO2-EOR-produced oil can produce findings that the process is net CO2 negative. Many studies omit upstream or downstream or both, including Suebsiri (2006), Hertwich et al. (2008; as described in Cuellar-Franca and Azapagic 2015), Faltinson and Gunter (2011), Wong (2013), International Energy Agency (2015), Lacy et al. (2015), Stewart and Haszeldine (2015), Nunez-Lopez et al. (2019), portions of Nunez-Lopez and Moskal (2019), and Liu et al. (2020).
Some studies that omit a significant stage of the CO2-EOR process simply assert that the process represents “climate change mitigation.” An example is a paper by Liu et al. (2020), which reports net CO2 emissions of producing one metric ton of crude oil as being negative: − 1675.15 kg CO2 (which yields a \(\gamma_{{{\text{CO}}_{2} }}\) value of 0.6). This result relies on the fact that they only account for gate-to-gate emissions of the CO2-EOR process. Yet the \(\gamma_{{{\text{CO}}_{2} }}\) value becomes positive (i.e., \(\gamma_{{{\text{CO}}_{2} }}\) value of 1.12) when the life cycle is extended and downstream emissions are included. A basic flaw of the paper—for public policy purposes—is that the analysis omits the upstream emissions from fuel-sourcing and energy usage for CO2 capture at the producer source from which the anthropogenic CO2 was obtained. This is a significant omission; such upstream segments of the CCS process may account for 25% to 32% of the total LCA emissions (Jaramillo et al. 2009; Hussain et al. 2013).
Other studies that use a partial LCA assert that the CO2-EOR process produces relative reductions, arguing that the emissions from this process are less than emissions from conventional oil production. This does not meet our standard of performing a straightforward analysis using the full life cycle. This is particularly so because most of the papers that make the argument about relative emissions also rely on the displacement assumption, discussed next. Another way to express concepts of reduction is in terms of stock and flow. An absolute reduction in the total stock of atmospheric carbon is distinct from a relative reduction of the continuously generated anthropogenic carbon flows. The latter will not necessarily result in absolute reduction. Many scientific papers look at relative flow reduction but not stock reduction. What is required is not simply a reduction “relative to” another industrial process, but rather a net absolute removal of CO2. “Absolute” as a measure of carbon removal effectiveness is often obscured and supplanted by notions “net zero” (see Allwood et al. 2019 on “Absolute Zero.”).
A few studies point out the crucial, determinative significance of project boundary choices. One is by the International Energy Agency (2015). Another is Cuellar-Franca and Azapagic (2015) who refer to the studies of Jaramillo et al. (2009) and Hertwich et al. (2008) and note that only the former includes emissions from refining and combusting the oil extracted via EOR.
For public policy purposes, only studies that perform a full LCA are relevant. Although a partial LCA may suffice for investors interested in profit maximization, it is not of use for policymakers who want to address the collective biophysical need of absolute atmospheric CO2 reduction.
Table 3 displays information on ICR papers pertaining to our research metric of carbon balance impact. Columns D and E indicate whether the study used a full or partial LCA and whether it assumed displacement; column F shows the paper’s conclusion about whether the process represents “mitigation”; and column G shows the ratio of emissions to removals in the instances where this was reported in the study. Where the data were available, we used the data in the papers to calculate the ratio of emissions to removals overall, and without the displacement assumption (column H).
The “Displacement” Assumption
Some studies report that CCS-EOR represents climate change “mitigation” or “abatement” by making an assumption about energy production “displacement.” In the “displacement” assumption, it is asserted that the CCS-EOR-produced oil displaces a certain amount of conventionally produced oil. EOR oil is said to have lower CO2 emissions than conventionally produced oil (because some of the CO2 remains underground), and, using the assumption that the EOR oil displaces conventionally produced oil, authors are able to assert that a relative CO2 emissions reduction takes place. In the literature, we found that the way the displacement argument unfolds is either by constricting the carbon accounting framework to a partial LCA (i.e., cutting off the downstream part as in Faltinson and Gunter 2011) and thereby ignoring those emissions, or by treating the difference of emissions between conventional and non-conventional oil as an amount that can be further deducted (e.g., in International Energy Agency 2015). In some studies, the displacement factor is not “credited” to conventional barrels of oil but to electricity generation at the point where the CO2 was sourced (e.g., Azzolina et al. 2016). In effect, even though the overall CCS-EOR process is net CO2 additive (releases more CO2 than it sequesters) it is claimed that the EOR-produced oil results in “net reductions” (International Energy Agency 2015). Such a perspective frames “net reductive” not in the way of absolute reduction but in the sense of releasing fewer emissions than oil produced in the business as usual scenario. That theoretical, comparative, “reduction” in emissions is labeled “mitigation.” The displacement argument is primarily made in studies of CCS-EOR, but would also apply to DAC-EOR.
The displacement argument was laid out a decade ago by Faltinson and Gunter (2011): “World oil production is determined by world oil demand and if CO2-EOR projects were not undertaken, some other source of oil would step forward and fill the gap.” That paper, using the displacement assumption and a partial LCA concludes that: “executing CO2-EOR projects will not result in incremental aggregate refining and consumption emissions.” That would yield a mean \(\gamma_{{{\text{CO}}_{2} }}\) of 0.81 (a CO2 reduction). However, we used their data, which includes downstream emissions (though not upstream emissions) and found that the overall carbon emission–storage ratio becomes 2.55 (the process is a net CO2 emitter). Numerous studies invoke the displacement assumption including Hussain et al. (2013, pp. 132, 134), Wong et al. (2013), Cooney et al. (2015), International Energy Agency (2015), Azzolina (2016), Nagabhushan and Walzer (2016), Nunez-Lopez and Moskal (2019), and Nagabhushan and Thompson (2019) (see Table 3). Choosing to invoke this assertion is determinative: when it is used it “results in net negative emissions from CO2-EOR,” whereas assuming that the oil produced by CO2-EOR is additional oil “results in CO2-EOR with net positive emissions” (Kolster et al. 2017). The “displacement” argument is further complicated by choice of “efficiency factor,” which affects the amount of displacement that is calculated. For details, see Online Appendix 2.
Evidence to support the displacement assertion is lacking. The assertion has been questioned or challenged by a number of researchers. E.g., Mac Dowell (2017) and Jaramillo et al. (2009) who conclude: “A thorough understanding of ultimate displacement is necessary before anyone can suggest that CO2-EOR is a sequestration technique… It is clear, that without displacement of a carbon intensive energy source CO2-EOR systems will result in net carbon emissions.” (Emphasis added.) Veld et al. (2013) also challenge the displacement assumption, arguing that CO2-EOR “may not displace any conventional production at all…” In fact, the U.S. Department of Energy (2016) itself has made the argument that CCS-EOR will add to U.S. oil production, stating that: “CO2-EOR has the important co-benefit of increasing domestic oil production…” A report by the Center for International Environmental Law (2019, p. 17) also rebuts the displacement argument.
Besides the lack of empirical evidence, the displacement assumption is founded on a conceptual flaw. It confuses need for energy with “demand for oil.” The displacement assumption relies on an idea of fossil fuel “demand” which derives from market economics teaching. The concept of “demand” is an artifact of market economics theory, and its unsuitable use in carbon removal modeling fails to recognize the difference between need and demand. In contrast to theoretical, modeled “demand” is societal need, (Wuyts 1992; Hodgson 2013; Goodwin et al 2014; Desmarais-Tremblay 2017) which is the collective expression of individual human wants. Societies need energy; they do not necessarily need the source to be a fossil fuel. Moreover, oil demand is a variable whose level can be increased or decreased by various factors, including demand reduction through public policy. Numbers of countries, states, and cities are actively reducing fossil fuel demand through policy and legislation (Wettengel 2019; Baker 2020) as they move their societies and economies to other ways of meeting their energy need.
Modeling Assumptions and Methodological Choices
As can be seen from the foregoing discussion, and as pointed out in some ICR studies (Mendelevitch 2013; Wong et al 2013; Stewart and Haszeldine 2014; Boot-Hanford 2014; International Energy Agency 2015; Kolster et al 2017), differing modeling assumptions, project boundaries, and methodological choices affect conclusions. Each study, in effect, creates its own CO2 “accounting framework” (McCormick 2012). By using a partial life cycle analysis or the “displacement” assumption some studies deem commercial ICR methods to achieve “climate mitigation,” “abatement,” or “decarbonization” (International Energy Agency 2015; Azzolina et al 2016; Nagabhushan and Waltzer 2016; Realmonte et al 2019; IPCC 2018; Nunez-Lopez et al 2019; Nunez-Lopez and Moskal 2019; Nagabhushan and Thompson 2019; Liu et al., 2020). Such conclusions generally rely upon an argument that reducing CO2 emissions relative to existing or theoretical emissions amounts to mitigation (e.g., Faltinson and Gunter 2011; Godec et al. 2013; Cooney et al. 2015; International Energy Agency 2015; Azzolina et al. 2016; Nagabhushan and Waltzer 2016; Nunez-Lopez et al. 2019). A few others find that the process alternates between being net CO2 negative and net positive. Yet, none of these studies address the ultimate question of net impact on the “stock” of atmospheric CO2. In contrast, other analyses find that, in these same processes, CO2 emissions exceed removals (e.g., Jaramillo et al. 2009; Armstrong and Styring 2015; Cuellar-Franca and Azagapic 2015; Smith et al. 2016) or refer to those findings (e.g., Hovorka and Tinker 2010; Seto and McRae 2011; McCoy 2011; North and Styring 2015; International Energy Agency 2015)
Market Framing: The Commodification of CO2 in Carbon Removal Research
The U.S. Supreme Court ruled in 2007 and 2014 that, under the U.S. Clean Air Act, CO2 is a pollutant to be regulated.Footnote 9 And anecdotally, some scientists have referred to excess atmospheric CO2 as waste to be disposed of like “sewage” (e.g., Lackner quoted in Magill 2016, Kolbert 2017 and Temple 2019a, b). Yet, virtually all studies of ICR proceed from the view that captured CO2 is a saleable commodity. Researchers therefore perform their analysis within a market framework in which commercial firms are the agents that will provide technological solutions; cost analyses are preeminent; and assumptions about theoretical market forces shape conclusions.
The view of captured CO2 as a saleable commodity is represented in the leading research reports by the IPCC and the U.S. National Academies of Sciences. The IPCC in its 2018 report suggested “pathways” in which “negative emissions technologies” could avert overshooting the global warming target ceiling of 1.5–2 °C. The U.S. National Academies of Sciences (NAS) soon followed suit with its own “negative emissions technologies” (NETs) report (2019), vaunting NETs as an attractive commercial opportunity in the “international market”:
This report’s statements about the need for an emissions reduction of a particular amount should not be interpreted as normative statements (a value judgment on what should be), but rather as statements about the action required given a decision to meet the Paris agreement or to provide NETs to the international market created by such a decision by most nations, many corporations, and several U.S. states and local governments…The committee believes that its conclusions and recommendations are generally robust, simply because the economic rewards for success would be so large. (Emphasis in original.)
One consequence of such market-centrism, and the commodification of CO2 in carbon removal science, is that studies tend to ultimately gravitate toward a financial framing of processes’ viability. And, in spite of their market framing, many of these papers nevertheless call for government action. The argument is that government should subsidize the development and deployment of ICR technologies so that, ostensibly, they can reach commercial viability. With the focus on finance and supposed commercial opportunity the impediments to scaling up ICR processes are presented in terms of financial needs rather than biophysical considerations. In effect, economics supersedes biophysics.
This pervasive market framing in carbon removal research has created a path dependency problem. That is, the commodification of CO2 in ICR research seems to constrain analyses to market-based solutions. This market frame is pervasive despite the reality that no viable market exists for the amount of CO2 that must be removed to have climate-significant impact, as the financial analyses of most papers show, and as discussed earlier. Indeed, this lack of a market is the expressed reason papers call upon government to finance ICR. And, an even larger problem is that marketized thought can lead to studies in which an ICR process is deemed “mitigation” simply because it is claimed to reduce CO2 emissions compared to “conventional” emissions, even though overall emissions exceed removals. The pervasiveness of market framing seems to blind most researchers from seeing the implications of their findings and from considering or evaluating a non-market process—dedicated storage. Dedicated storage, not sale, of captured CO2 appears to be the only disposition of CO2 that can produce a net reduction of atmospheric CO2. And further, since point-source capture can at best, and only theoretically, sequester as much CO2 as is emitted, only renewable energy-powered direct air capture with dedicated storage could, in principle, actually reduce the stock of atmospheric CO2.
The alternative to viewing CO2 as a potential asset to be captured and sold for commercial gain is to understand excess atmospheric CO2 as a substance to be sequestered, in perpetuity. We will return to this view in the conclusion.
Resource Usage
In examining resource usage, our approach was to standardize for output in order to compare resource input requirements on a common basis. The output amount we standardized for is 1 GtCO2 removal per year. We examined energy and land requirements at that level of capture.
Resource Usage: Energy
Direct Air Capture
A few studies discuss the immense energy consumption of DAC when operated at scale. For example, Smith et al. (2016) reported that the energy requirements for a net removal of ~ 3.3 gigatons of carbon equivalents by amine DAC “would amount to a global energy requirement of 156 EJ year−1 if all energy costs are included. This is equivalent to 29% of total global energy use in 2013 (540 EJ year−1)…” Translating these figures into 1 GtCO2 removal yields 3580.9 terawatt hours,Footnote 10 which is slightly more than the figure of 3417 terawatt hours reported by Climate Advisers (2018), and equates to nearly the total amount of electricity generated in the U.S. in 2017. Yet, even these amounts omit some downstream components of the DAC life cycle process, such as the energy requirements for transportation or sequestration of the captured CO2. Also omitted are the energy requirements for manufacturing sorbent at scale (Realmonte et al. 2019). Socolow et al. (2011), Smith et al. (2016), Climate Advisors (2018), House et al. (2011), Realmonte et al. (2019), and the U.S. National Academies of Sciences (2019) address energy consumption and are summarized in Online Appendix 3.
As described earlier, there is evidently a growing consensus that the direct air capture when fossil-fueled is thermodynamically counterproductive. The alternative routinely offered is to power the process using renewable energy. For example, the National Academy of Sciences negative emissions technologies report (2019) shows that net CO2 reductive emission–storage ratios can only with certainty be obtained when using non-carbon intensive power sources (\(\gamma_{{{\text{CO}}_{2} }}\) ratios for solar energy are 0.0045–0.066 and for nuclear energy 0.0022–0.032; ranges were only available for the solid-sorbent case).Footnote 11
Yet, according to the energy requirements shown in Smith et al. (2016), renewables-powered DAC would require all of the wind and solar power generated in the U.S. in 2018 to capture just 1/10th GtCO2.Footnote 12 Realmonte et al (2019) projected that DAC would “use around a quarter of global energy demand to provide power and heat for DACCS technologies by the end of the century.” Fridley and Heinberg (2018) note that the energy requirement for the fans alone in removing 1 GtCO2 would be more than all the solar power generation in the U.S. in 2017—based on Keith et al. (2018) who reported an energy requirement of 61 kWh/tCO2 for the fans alone. See Online Appendix 3 for more findings. Given the enormous energy requirements for direct air capture, the question for policymakers is whether to use public financing to divert renewable energy production to DAC or to support the development and deployment of renewables to power buildings, industry, and transport in order to directly curtail CO2 emissions.
Point-Source Capture
CCS is more energy-efficient than DAC, since CCS captures the CO2 from the source of emission—generally power plants. However, a recent study argues that investments in renewables development would have better energetic returns than investments in CCS not even considering the CO2 being used for EOR. Sgouridis et al. (2019) have shown that investments in “renewable technologies generally provide a better energetic return than CCS.” They found the energetic return on CCS projects to range from 6.6:1 and 21.3:1, whereas the energetic return on renewable electricity ranges from 9:1 to 30 + :1. They conclude that “Therefore, renewables plus [battery] storage provide a more energetically effective approach to climate mitigation than constructing CCS fossil-fuel power stations.”
Resource Usage: Land
There are three types of land requirements associated with industrial carbon dioxide removal: surface land for the capture process; surface land for pipeline transport of CO2; subsurface space, and surface land access, for geological storage.
Capture Process
An important point for policymakers is that, while studies of carbon removal methods generally cite land requirements as a potential barrier to biological methods, few studies point to the tremendous land requirements for renewables-powered DAC. Most reports on DAC elide or ignore the land requirements of this method, which become enormous when operating at scale. CCS also has significant land requirements that are not addressed in many of the reports on this method. The other surface land requirement that usually lacks a prominent place the scientific literature is land for pipelines to transport the CO2 to injections sites—whether that be for EOR or for injection underground. And lastly, there is the subsurface space that is required for storage in perpetuity.
Most reports on direct air capture (DAC) elide or ignore the land requirements of this method, which become enormous when operating at scale, particularly if powered by renewable energy. To operate at scale (capture of 1 GtCO2), a liquid solvent DAC system powered by natural gas would require a land area more than five (5) times the size of the city of Los Angeles. If solar is used to replace the fossil fuel power source, then the required land area expands dramatically: to remove 1Gt of CO2 would require a land area ten (10) times the size of the state of Delaware. These estimates are based on the National Academies of Sciences report on negative emissions technologies (2019), discussed further in Online Appendix 3. And this does not count the land required for transport, injection, and storage after the CO2 has been captured.
Transport: Pipelines Land Requirements
A surface land requirement lacking a prominent place the scientific literature is the vast territory needed for pipelines to transport the captured CO2 to injection sites—whether for EOR or dedicated subsurface storage. One Gt of CO2 capture and transport would entail CO2 pipeline capacity larger than the existing petroleum pipeline system (FridleyFootnote 13; Mac Mac Dowell et al 2017). Mac Mac Dowell et al. (2017) stress the enormous infrastructure buildout that would be required for CO2 capture and storage to operate at scale. “Given that CCS is expected to account for the mitigation of approximately 14–20% of total anthropogenic CO2 emissions, in 2050 the CCS industry will need to be larger by a factor of 2–4 in volume terms than the current global oil industry.” (See Online Appendix 3 for further detail.) DAC advocates often argue that DAC facilities can be located near injection sites, mooting the need for a vast pipeline network. But such assertions are generally made in promotional materials; they ignore the implications of operating DAC at scale and disregard the challenges of locating vast DAC facilities near suitable subsurface storage sites.
Subsurface Storage
Estimates of the quantity of subsurface storage capacity in geological formations vary widely. The Congressional Research Service (CRS) (2020) cites U.S. Dept. of Energy estimate of storage capacity in the U.S.—a wide range of from 2618 to 22,323 Gt of CO2 (most being in saline formations). The IPCC (2005) estimated only 2000 Gt of worldwide storage capacity. Herzog (2011) noted, “it is not yet proven that enough storage capacity exists to support CCS at the gigaton scale…” Seto and McRae note that most storage capacity is in saline aquifers (which can lead to water contamination). A report by the European Academies, Science Advisory Council (EASAC) (2018) points out differences in global capacity estimates (citing Dooley 2013): a “theoretical” capacity of 35,300 GtCO2, an “effective” capacity of 13,500 GtCO2, and a “practical” capacity of 3900 GtCO2. Zahaksy and Krevor (2020) project ample geological storage, estimating 2700 Gt of “discovered storage resource” with a capacity to “sustain peak injection rates of 40–60 Gt per year…”, yet nowhere address whether such a massive capture of CO2 for dedicated storage is possible or plausible.
Other Resource Consumption
Other resource requirements include water for the ICR process and materials for DAC sorbent production. Parts of the mechanical–chemical process use prodigious amounts of water; CO2 injection alone “would require an exorbitant amount of water” (Schlissel and Wamsted 2018). Chemical sorbent production for DAC at scale would require “a massive deployment” and “major refocusing of the manufacturing and chemical industries for sorbent production, and a large need for electricity and heat” according to Realmonte et al. (2019), who recommend that a “full life cycle assessment” of DAC be undertaken “to understand how its deployment drives energy demand for sorbent manufacture, as well as energy and material demand such as cement and steel…”.
Scale Issues
Most scientific studies of industrial carbon removal do not acknowledge or address the massive level of effort that would be required to scale up in time to have meaningful climate impact, and many studies ignore or slight the known and potential biophysical repercussions of operating at scale. The scale of ICR at this time is negligible in relation to the excess concentration of CO2 in the atmosphere. Most studies that address the scaling-up challenge frame it as a financial problem. Only a few papers address biophysical and infrastructural issues of scaling up to a climate-significant level.
Scale: Capture Capacity vs Scale Needed
Over the last 250 years, since the beginning of the industrial revolution, the stock of atmospheric CO2 has substantially increased. Compared to pre-industrial levels which were about 280 ppm (World Economic Forum 2019)—a level that existed for several thousand years (Intergovernmental Panel on Climate Change 2018d), in 2020 the level reached 417 ppm (Scripps Institute of Oceanography 2020). Annual CO2 emissions have reached nearly 37Gt globally (Global Carbon Project 2019) and U.S. annual CO2 emissions were approximately 5.3 Gt in 2017 (Fleming 2019 and ourworldindata.org., undated) and 5.1 Gt in 2019 (U.S. Energy Information Association 2020). There is not a consensus on precisely what level of atmospheric CO2 is “safe,” or what levels would avoid exceeding the 1.5° Celsius or 2° Celsius targets. Estimates have ranged from 350 ppm (McKibben citing Hansen in McKibben 2007) to 507 ppm (Met Office Weather Service 2018). According to Kemp (2019), IPCC scientists “have estimated the limits imply an atmospheric CO2 concentration of no more than 450 parts per million (for 2 degrees) or 430 ppm (for 1.5 degrees).”
The amount of CO2 being captured and stored through CCS/CCUS and DAC currently is negligible in relation to the excess concentration of CO2 in the atmosphere, and in comparison to projected need (Mac Dowell et al. 2017; Minx et al 2018; Fuss et al 2018; Nemet et al 2018; Honegger and Reiner 2017; Jacobson 2019; Herzog 2011). Reported ICR capture capacity (primarily point-source capture) is currently 2.4 million tonnes in N. America and 1.7 million tonnes in Europe for a total of 4.1 million tonnesFootnote 14 which amounts to 0.0041 Gt. This amount is negligible in comparison to the projected need, e.g., a study by Mac Dowell et al. (2017) calculates that a global sequestration rate of 2.5 GtCO2 per year is needed by 2030, increasing to 8 to 10 Gt per year by 2050. The U.S. National Academies of Sciences (2019) estimates that NETs will need to remove ~ 10 Gt/year CO2 globally by mid-century. The current scale of NET capture is insignificant in comparison. The largest DAC facility globally captures only 4000 tCO2/year (Peters 2019; Soltoff 2019), which is only 0.000004 Gt. The next largest DAC facilities capture only one to “a few” tons a day which annually amounts to a few hundred tons (Rathi 2018, 2019). One unbuilt DAC facility aspires to capture 36,500 tCO2/year (Malo 2019), which is still negligible: only 0.0000365 Gt, and another aspires to one million tons per year (Geman 2020), which is still only one one-thousandth of a Gt (and the captured CO2 will be used for enhanced oil recovery). The U.S. National Academies of Sciences (2019), in writing about all forms of NETs, cautions that “Any argument to delay mitigation efforts because NETs will provide a backstop drastically misrepresents their current capacities and the likely pace of research progress.”
Scale: Biophysical Impacts
Storage of CO2 captured through mechanical–chemical methods requires injection of CO2 into a suitable subsurface geological formation, which raises a variety of issues: quality and quantity of suitable storage sites (discussed above); potential lack of permanence of storage (Bruhn et al. 2016; Congressional Research Service 2018); leakage (European Academies, Science Advisory Council 2018); fugitive emissions (Stewart and Haszeldine 2015); potential groundwater contamination and earthquakes (Clean Water Action 2017); air pollution and health damage (Jacobson 2019); and liability for environmental and health problems (Herzog 2011). (See Online Appendix 3 for detail.) Most captured CO2 is currently used for EOR (as discussed earlier); the CO2 is injected into an oil reservoir where it is meant to remain in perpetuity. Other locations for storage are saline formations and unmineable coal seams (Herzog 2011). But there is almost no experience with large-scale, commercial geologic storage (Congressional Research Service 2020a, b), and only two low-volume, dedicated storage commercial sites in Norway (which operate based on government incentives). The hallmark of geologic storage is uncertainty (Boot-Hanford et al. 2014).
Legislation would be required to assure standards are in place to avert or reduce the biophysical impacts of mechanical–chemical CO2 capture and storage.
Also an extensive monitoring, measuring, verification, and data tracking system would be required to verify storage and detect and monitor leakage, air and water quality, seismic activity, and other ancillary effects from subsurface storage. (Dooley 2010; Herzog 2011; Boot-Hanford et al. 2014; Stewart and Haszeldine 2014; International Energy Agency 2015; Smith et al. 2016; Nemet et al. 2018; Schlissel and Wamsted 2018; Realmonte et al. 2019; Nunez-Lopez and Moskal 2019; Muffett and Feit 2019). The sensing and tracking technology and network could constitute a new “Internet of Carbon” (Buck 2018), which, itself, raises questions of additional energy consumption and resulting additional CO2 emissions, land requirements, and intellectual property (IP) rights to such technology.
Scale: Mobilization Required
Of the few authors who have addressed the scale issue from a biophysical perspective, several have emphasized that the scale of effort that would be needed is equivalent to “wartime mobilization.” Here is Mac Dowell et al. (2017):
Given that CCS is expected to account for the mitigation of approximately 14–20% of total anthropogenic CO2 emissions, in 2050 the CCS industry will need to be larger by a factor of 2–4 in volume terms than the current global oil industry. In other words, we have 35 years to deploy an industry that is substantially larger than one which has been developed over approximately the last century…This is an exceptionally challenging task, similar in scale to wartime mobilization. (Emphasis added.)
The Climate Investigations Center (2019) and Barnard (2019) describe the “massive” amounts of costly infrastructure” that would be required in order to operate at scale. Romm (2008) wrote more than a decade ago that “450[ppm] needs a World War II-scale effort starting in the next decade.”