Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies

Abstract

Analyses proposing a high share of concentrated solar power (CSP) in future 100% renewable energy scenarios rely on the ability of this technology, through storage and/or hybridization, to partially avoid the problems associated with the hourly/daily (short-term) variability of other variable renewable sources such as wind or solar photovoltaic. However, data used in the scientific literature are mainly theoretical values. In this work, the actual performance of CSP plants in operation from publicly available data from four countries (Spain, the USA, India, and United Arab Emirates) has been estimated for three dimensions: capacity factor (CF), seasonal variability, and energy return on energy invested (EROI). In fact, the results obtained show that the actual performance of CSP plants is significantly worse than that projected by constructors and considered by the scientific literature in the theoretical studies: a CF in the range of 0.15–0.3, low standard EROI (1.3:1–2.4:1), intensive use of materials—some scarce, and significant seasonal intermittence. In the light of the obtained results, the potential contribution of current CSP technologies in a future 100% renewable energy system seems very limited.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Additionally, restrictions on water use in arid regions that often have the most appropriate solar resources for CSP would reduce plant efficiency due to the implementation of dry-cooling technologies.

  2. 2.

    However, these large scale intercontinental infrastructures are challenged by geopolitical and economic barriers, as well as concerns over energy and food security (for a detailed discussion, see Capellán-Pérez et al. 2017b).

  3. 3.

    In Capellán-Pérez et al. (2017b), Sv is called seasonal variation, that could be a rather confusing term; here we use this performance factor in this sense: the more seasonal variation the lower Sv, or inversely, the more approaching Sv = 1 the lesser seasonal variation of electricity production.

  4. 4.

    4.4% = 15%·0.2907, 15% being the legal maximum of primary energy to be supplied by gas, and 0.2907 the efficiency factor of gas combustion. Assuming that the maximum has been reached, this is reasonable, given that most CSP plants in Spain have been penalized in the past for surpassing the 15% level (CNMC 2016).

  5. 5.

    Towers use a double tracking solar technology against the one tracking used by Parabolic plants.

References

  1. Alobaidli A, Sanz B, Behnke K, Witt T, Viereck D, Schwarz MA (2017) SHAMS 1—design and operational experiences of the 100 MW–540 °C CSP Plant in Abu Dhabi. AIP Conf Proc 1850:020001. https://doi.org/10.1063/1.4984325

    Article  Google Scholar 

  2. Arvesen A, Hertwich EG (2012) Assessing the life cycle environmental impacts of wind power: a review of present knowledge and research needs. Renew Sustain Energy Rev 16:5994–6006. https://doi.org/10.1016/j.rser.2012.06.023

    Article  Google Scholar 

  3. Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: review and results harmonization. Renew Sustain Energy Rev 42:1113–1122. https://doi.org/10.1016/j.rser.2014.10.082

    Article  Google Scholar 

  4. Boccard N (2009) Capacity factor of wind power realized values vs. estimates. Energy Policy 37:2679–2688. https://doi.org/10.1016/j.enpol.2009.02.046

    Article  Google Scholar 

  5. BP (2017) BP statistical review of world energy June 2017, statistical review of world energy. British Petroleum, London

    Google Scholar 

  6. Brand B, Stambouli AB, Zejli D (2012) The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria. Energy Policy 47:321–331

    Article  Google Scholar 

  7. Burkhardt JJ, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 45:2457–2464. https://doi.org/10.1021/es1033266

    Article  Google Scholar 

  8. Capellán-Pérez I, Mediavilla M, de Castro C, Carpintero Ó, Miguel LJ (2014) Fossil fuel depletion and socio-economic scenarios: an integrated approach. Energy 77:641–666. https://doi.org/10.1016/j.energy.2014.09.063

    Article  Google Scholar 

  9. Capellán-Pérez I, de Blas I, Nieto J, De Castro C, Miguel LJ, Mediavilla M, Carpintero Ó, Rodrigo P, Frechoso F, Cáceres S (2017a) MEDEAS Model and IOA implementation at global geographical level (Deliverable MEDEAS Project, http://www.medeas.eu/deliverables No. D4.1). GEEDS, University of Valladolid, Valladolid

  10. Capellán-Pérez I, de Castro C, Arto I (2017b) Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios. Renew Sustain Energy Rev 77:760–782. https://doi.org/10.1016/j.rser.2017.03.137

    Article  Google Scholar 

  11. Clack CTM, Qvist SA, Apt J, Bazilian M, Brandt AR, Caldeira K, Davis SJ, Diakov V, Handschy MA, Hines PDH, Jaramillo P, Kammen DM, Long JCS, Morgan MG, Reed A, Sivaram V, Sweeney J, Tynan GR, Victor DG, Weyant JP, Whitacre JF (2017) Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proc Natl Acad Sci USA 114:6722–6727. https://doi.org/10.1073/pnas.1610381114

    Article  Google Scholar 

  12. CNMC (2016) Resolución por la que se aprueba la liquidación definitiva de las primas equivalentes, las primas, incentivos y complementos a las instalaciones de producción de energía eléctrica de tecnología solar termoeléctrica correspondiente a los ejercicios 2009, 2010 Y 2011 (No. LIQ/DE/ 143 /1 5). Comisión Nacional de los Mercados y la Competencia

  13. Corona B, Miguel GS, Cerrajero E (2014) Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. Int J Life Cycle Assess 19:1264–1275. https://doi.org/10.1007/s11367-014-0728-z

    Article  Google Scholar 

  14. Corona B, Ruiz D, San Miguel G (2016) Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies 9:413. https://doi.org/10.3390/en9060413

    Article  Google Scholar 

  15. Day JW, D’Elia CF, Wiegman ARH, Rutherford JS, Hall CAS, Lane RR, Dismukes DE (2018) The energy pillars of society: perverse interactions of human resource use, the economy, and environmental degradation. Biophys Econ Resour Qual 3:2. https://doi.org/10.1007/s41247-018-0035-6

    Article  Google Scholar 

  16. de Castro C, Mediavilla M, Miguel LJ, Frechoso F (2013) Global solar electric potential: a review of their technical and sustainable limits. Renew Sustain Energy Rev 28:824–835. https://doi.org/10.1016/j.rser.2013.08.040

    Article  Google Scholar 

  17. de Castro C, Carpintero Ó, Frechoso F, Mediavilla M, de Miguel LJ (2014) A top-down approach to assess physical and ecological limits of biofuels. Energy 64:506–512. https://doi.org/10.1016/j.energy.2013.10.049

    Article  Google Scholar 

  18. Delucchi MA, Jacobson MZ (2011) Providing all global energy with wind, water, and solar power, Part II: reliability, system and transmission costs, and policies. Energy Policy 39:1170–1190. https://doi.org/10.1016/j.enpol.2010.11.045

    Article  Google Scholar 

  19. Deng YY, Haigh M, Pouwels W, Ramaekers L, Brandsma R, Schimschar S, Grözinger J, de Jager D (2015) Quantifying a realistic, worldwide wind and solar electricity supply. Glob Environ Change 31:239–252. https://doi.org/10.1016/j.gloenvcha.2015.01.005

    Article  Google Scholar 

  20. Denholm P, Mehos M (2015) The role of concentrating solar power in integrating solar and wind energy. 4th Solar Integration Workshop

  21. Douglas K, Boyd J, Byron J, Eggert A, Weisenmiller R, Vaccaro K (2010) Abengoa Mojave Solar Project. Commission Decision. (No. CEC-800-2010-008-CMF. Docket Number 09-AFC-5). California Energy Commission

  22. Ehtiwesh IAS, Coelho MC, Sousa ACM (2016) Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew Sustain Energy Rev 56:145–155. https://doi.org/10.1016/j.rser.2015.11.066

    Article  Google Scholar 

  23. Elliston B, Diesendorf M, MacGill I (2012) Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market. Energy Policy 45:606–613. https://doi.org/10.1016/j.enpol.2012.03.011

    Article  Google Scholar 

  24. Ferroni F, Hopkirk RJ (2016) Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 94:336–344. https://doi.org/10.1016/j.enpol.2016.03.034

    Article  Google Scholar 

  25. Ferroni F, Guekos A, Hopkirk RJ (2017) Further considerations to: Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation. Energy Policy 107:498–505. https://doi.org/10.1016/j.enpol.2017.05.007

    Article  Google Scholar 

  26. García-Olivares A (2016) Energy for a sustainable post-carbon society. Sci Mar 80:257–268. https://doi.org/10.3989/scimar.04295.12A

    Article  Google Scholar 

  27. García-Olivares A, Ballabrera-Poy J, García-Ladona E, Turiel A (2012) A global renewable mix with proven technologies and common materials. Energy Policy 41:561–574. https://doi.org/10.1016/j.enpol.2011.11.018

    Article  Google Scholar 

  28. Greenpeace GWEC, SolarPowerEurope (2015) Energy [R] evolution-A sustainable world energy outlook 2015. GWEC, SolarPowerEurope, Greenpeace

    Google Scholar 

  29. Hall CAS, Klitgaard KA (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer, New York

    Google Scholar 

  30. Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152. https://doi.org/10.1016/j.enpol.2013.05.049

    Article  Google Scholar 

  31. Hammond GP, Jones CI (2008) Embodied energy and carbon in construction materials. Proc Inst Civil Eng Energy 161:87–98

    Google Scholar 

  32. Heath G, Turchi C, Decker T, Burkhardt J, Kutscher C (2009) Life cycle assessment of thermal energy storage: two-tank indirect and thermocline. In: ASME 2009 3rd international conference on energy sustainability collocated with the heat transfer and InterPACK09 conferences. American Society of Mechanical Engineers, pp 689–690

  33. Heath GA, Turchi CS, Burkhardt JJ III (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and impacts of key design alternatives. In: SolarPACES conference, Granada, Spain. NREL, Golden. http://www.nrel.gov/docs/fy11osti/52186.pdf

  34. Hernandez RR, Hoffacker MK, Murphy-Mariscal ML, Wu GC, Allen MF (2015) Solar energy development impacts on land cover change and protected areas. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1517656112

    Google Scholar 

  35. Heun MK, de Wit M (2012) Energy return on (energy) invested (EROI), oil prices, and energy transitions. Energy Policy 40:147–158. https://doi.org/10.1016/j.enpol.2011.09.008

    Article  Google Scholar 

  36. IEA (2018) IEA world energy statistics and balances, world energy statistics and balances (database). IEA/OECD, Paris

    Google Scholar 

  37. IEA and IRENA (2013) Concentrating solar power. IEA-ETSAP and IRENA technology brief E10 (Technology Brief No. 10). IEA ETSAP and IRENA

  38. IEA and IRENA (2017) Perspectives for the energy transition. Investment needs for a low-carbon energy system. International Energy Agency and International Renewable Energy Agency

  39. IPCC (2011) Special report on renewable energy sources and climate change mitigation. Cambridge University Press, New York

    Google Scholar 

  40. IPCC (2014) Climate change 2014: mitigation of climate change. Fifth Assess. Rep. Intergov. Panel Clim. Change

  41. IRENA (2018) Renewable power generation costs in 2017. International Renewable Energy Agency, Abu Dhabi

    Google Scholar 

  42. IRENA db (2017) IRENA resource (database). International Renewable Energy Agency. http://resourceirena.irena.org

  43. Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39:1154–1169. https://doi.org/10.1016/j.enpol.2010.11.040

    Article  Google Scholar 

  44. Jacobson et al (2016) 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world, Joule 1:108–121

    Google Scholar 

  45. Johansson B (2013) Security aspects of future renewable energy systems—a short overview. Energy 61:598–605. https://doi.org/10.1016/j.energy.2013.09.023

    Article  Google Scholar 

  46. Keough (2011) Austempered ductile iron (ADI)—a green alternative. American Foundry Society, Schaumburg. http://www.afsinc.org

  47. Klein SJW, Rubin ES (2013) Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy 63:935–950. https://doi.org/10.1016/j.enpol.2013.08.057

    Article  Google Scholar 

  48. Krishnamurthy P, Banerjee R (2012) Energy analysis of solar thermal concentrating systems for power plants. In: International conference on future electrical power and energy systems, lecture notes in information technology, pp 509–514

  49. Kuenlin A, Augsburger G, Gerber L, Maréchal F (2013) Life cycle assessment and environomic optimization of concentrating solar thermal power plants. In: Presented at the 26th international conference on efficiency, cost, optimization, simulation and environmental impact of energy systems (ECOS2013)

  50. La Africana (2018) Africana energia. http://africanaenergia.es/index.php/es/africana-energia.html. Accessed 15 Jan 2018

  51. Lambert JG, Hall CAS, Balogh S, Gupta A, Arnold M (2014) Energy, EROI and quality of life. Energy Policy 64:153–167. https://doi.org/10.1016/j.enpol.2013.07.001

    Article  Google Scholar 

  52. Lechón Y, de la Rúa C, Sáez R (2008) Life cycle environmental impacts of electricity production by solarthermal power plants in Spain. J Sol Energy Eng 130:021012. https://doi.org/10.1115/1.2888754

    Article  Google Scholar 

  53. Lenzen M, McBain B, Trainer T, Jütte S, Rey-Lescure O, Huang J (2016) Simulating low-carbon electricity supply for Australia. Appl Energy 179:553–564. https://doi.org/10.1016/j.apenergy.2016.06.151

    Article  Google Scholar 

  54. Lilliestam J, Labordena M, Patt A, Pfenninger S (2017) Empirically observed learning rates for concentrating solar power and their responses to regime change. Nat Energy 2:17094. https://doi.org/10.1038/nenergy.2017.94

    Article  Google Scholar 

  55. MacKay DJC (2013) Solar energy in the context of energy use, energy transportation and energy storage. Philos Trans R Soc Lond A 371:20110431. https://doi.org/10.1098/rsta.2011.0431

    Article  Google Scholar 

  56. Ministerio de Energía (2018) Estadísticas eléctricas anuales: eléctricas 2016–2018. Generación eléctrica 2016 [ODS]

  57. Ministerio de Industria, Energía y Turismo (2014) Orden IET/1882/2014, de 14 de octubre, por la que se establece la metodología para el cálculo de la energía eléctrica imputable a la utilización de combustibles en las instalaciones solares termoeléctricas (No. BOE-A-2014-10475), BOE. Ministerio de Industria, Energía y Turismo

  58. Montgomery Z (2009) Environmental impact study: CSP vs. CdTe thin film photovoltaics. Masters Proj. Submitt. Partial Fulfillment Requir. Master Environ. Manag. Degree Nicholas Sch. Environ. Duke Univ

  59. Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Policy 93:3–7. https://doi.org/10.1016/j.enpol.2016.02.051

    Article  Google Scholar 

  60. NASA EO (2010) Massive dust storm sweeps across Africa. NASA Earth Observatory. https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=43200&eocn=image&eoci=related_image

  61. NREL (2012) Renewable electricity futures study (entire report) (4 vols. No. NREL/TP-6A20-52409). National Renewable Energy Laboratory, Golden

    Google Scholar 

  62. NREL (2017) Concentrating solar power projects. National Renewable Energy Laboratory. http://www.nrel.gov/csp/solarpaces/. Accessed 6 Jan 2017

  63. Palmer G (2013) Household solar photovoltaics: supplier of marginal abatement, or primary source of low-emission power? Sustainability 5:1406–1442. https://doi.org/10.3390/su5041406

    Article  Google Scholar 

  64. Palmer G (2017) A framework for incorporating EROI into electrical storage. Biophys Econ Resour Qual 2:6. https://doi.org/10.1007/s41247-017-0022-3

    Article  Google Scholar 

  65. Pihl E, Kushnir D, Sandén B, Johnsson F (2012) Material constraints for concentrating solar thermal power. In: Energy, integration and energy system engineering, European symposium on computer-aided process engineering 2011, vol 44, pp 944–954. https://doi.org/10.1016/j.energy.2012.04.057

  66. Pillai U (2015) Drivers of cost reduction in solar photovoltaics. Energy Econ 50:286–293. https://doi.org/10.1016/j.eneco.2015.05.015

    Article  Google Scholar 

  67. Prieto PA, Hall CAS (2013) Spain’s photovoltaic revolution: the energy return on investment, 2013th edn. Springer, New York

    Google Scholar 

  68. Radan (2016) 20,000 UAE homes powered by solar energy in 2015. https://www.khaleejtimes.com/nation/abu-dhabi/20000-uae-homes-powered-by-solar-energy-in-2015. Retrieved 15 Jan 2018

  69. Raugei M, Carbajales-Dale M, Barnhart CJ, Fthenakis V (2015) Rebuttal: “comments on ‘energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—making clear of quite some confusion. Energy 82:1088–1091. https://doi.org/10.1016/j.energy.2014.12.060

    Article  Google Scholar 

  70. Raugei M, Sgouridis S, Murphy D, Fthenakis V, Frischknecht R, Breyer C, Bardi U, Barnhart C, Buckley A, Carbajales-Dale M, Csala D, de Wild-Scholten M, Heath G, Jæger-Waldau A, Jones C, Keller A, Leccisi E, Mancarella P, Pearsall N, Siegel A, Sinke W, Stolz P (2017) Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: a comprehensive response. Energy Policy 102:377–384. https://doi.org/10.1016/j.enpol.2016.12.042

    Article  Google Scholar 

  71. REE (2018) REE webpage. Red Eléctrica de España. http://www.ree.es/. Accessed 15 Jan 2018

  72. ReflecTech (2012) Embodied energy. RefkecTech White Paper

  73. REN21 (2015) Renewables 2015. Global status report. REN 21, Paris

    Google Scholar 

  74. REN21 (2016) Renewables 2016. Global status report. REN 21, Paris

    Google Scholar 

  75. REN21 (2017) Renewables Global futures report. Great debates towards 100% renewable energy. REN21 Secretariat, Paris

    Google Scholar 

  76. Sanz B (2017) How SHAMS 1 CSP project produce more electricity beyond expectation? Here the benificial O&M experience

  77. Smil V (2010) Energy transitions: history, requirements, prospects. Praeger, Santa Barbara

    Google Scholar 

  78. Solanki J (2016) Godawari CSP plant: an overview of performance. Sun Focus 4:6–8

    Google Scholar 

  79. Trainer T (2010) Can renewables, etc., solve the greenhouse problem? The negative case. Energy Policy 38:4107–4114. https://doi.org/10.1016/j.enpol.2010.03.037

    Article  Google Scholar 

  80. Trainer T (2012) A critique of Jacobson and Delucchi’s proposals for a world renewable energy supply. Energy Policy 44:476–481. https://doi.org/10.1016/j.enpol.2011.09.037

    Article  Google Scholar 

  81. Trainer T (2013) Can Europe run on renewable energy? A negative case. Energy Policy 63:845–850. https://doi.org/10.1016/j.enpol.2013.09.027

    Article  Google Scholar 

  82. Trainer T (2017a) Some problems in storing renewable energy. Energy Policy 110:386–393. https://doi.org/10.1016/j.enpol.2017.07.061

    Article  Google Scholar 

  83. Trainer T (2017b) Can renewables meet total Australian energy demand: a “disaggregated” approach. Energy Policy 109:539–544. https://doi.org/10.1016/j.enpol.2017.07.040

    Article  Google Scholar 

  84. Trieb F (2006) Trans-mediterranean interconnection for concentrating solar power. German Aerospace Center (DLR), Institute of Technical Thermodynamics and Section Systems Analysis and Technology Assessment, Stuttgart

    Google Scholar 

  85. Turchi C (2010) Parabolic trough reference plant for cost modeling with the solar advisor model (SAM). Technical Report No. NREL/TP-550-47605. NREL

  86. US EIA db (2018) USA energy statistics (database). US Energy Information Administration. http://www.eia.gov

  87. Vargel C (2004) Corrosion of aluminium. Elsevier, Amsterdam

    Google Scholar 

  88. Viebahn P (2013) Solarthermische kraftwerkstechnologie für den schutz des erdklimas. SOKRATES-Projekt, Stuttgart

    Google Scholar 

  89. Viebahn P, Lechón Y, Trieb F (2011) The potential role of concentrated solar power (CSP) in Africa and Europe—a dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 39:4420–4430. https://doi.org/10.1016/j.enpol.2010.09.026

    Article  Google Scholar 

  90. Wagner F (2014) Considerations for an EU-wide use of renewable energies for electricity generation. Eur Phys J Plus 129:1–14. https://doi.org/10.1140/epjp/i2014-14219-7

    Article  Google Scholar 

  91. Weinrebe G, Boehnke M, Trieb F (1998) Life cycle assessment of an 80 MW SEGS plant and a 30 MW Phoebus power tower. Sol Eng 417–424

  92. Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221. https://doi.org/10.1016/j.energy.2013.01.029

    Article  Google Scholar 

  93. Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2014) Reply on “Comments on ‘energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants’—making clear of quite some confusion.” Energy 68:1004–1006. https://doi.org/10.1016/j.energy.2014.02.026

    Article  Google Scholar 

  94. WEO (2014) World energy outlook 2014. OECD/IEA, Paris

    Google Scholar 

  95. WWF (2011) The energy report: 100% renewable energy by 2050. WWF, Ecofys, OMA, Gland

    Google Scholar 

  96. Zhang HL, Baeyens J, Degrève J, Cacères G (2013) Concentrated solar power plants: review and design methodology. Renew Sustain Energy Rev 22:466–481. https://doi.org/10.1016/j.rser.2013.01.032

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially developed under the MEDEAS Project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 691287. Iñigo Capellán-Pérez also acknowledges financial support from the Juan de la Cierva Research Fellowship of the Ministry of Economy and Competitiveness of Spain (No. FJCI-2016-28833).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos de Castro.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is not conflict of interest.

Appendices

Appendix A

See Table 9.

Table 9 Contribution to the EnU for each phase/material processing of a CSP plant standard type Andasol for scenarios 1–3

Appendix B

See Tables 10 and 11.

Table 10 Sensitivity analysis for some other parameters for other two extreme cases (see Table 7 and text for the chosen parameters)
Table 11 Sensitivity analysis for the parameter “g

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Castro, C., Capellán-Pérez, I. Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies. Biophys Econ Resour Qual 3, 14 (2018). https://doi.org/10.1007/s41247-018-0043-6

Download citation

Keywords

  • Concentrated Solar Power (CSP)
  • Penetration Scenarios
  • Energy Return On Energy Invested (EROI)
  • Variable Renewable Sources
  • Cumulative Exergy Demand (CExD)