Skip to main content
Account

Table 2 Results of first simulation study (contd.)

From: A restricted latent class model with polytomous attributes and respondent-level covariates

\(N\)

\(J\)

\(K\)

\(L\)

\(\rho\)

\(\beta\)

\(\delta\)

\(\delta ^0\)

\(\delta ^1\)

\(\beta ^0\)

\(\beta^1\)

500

15

2

2

0.000

0.093

0.974

0.921

1.000

0.037

0.121

500

15

2

3

0.000

0.190

0.962

0.932

0.986

0.076

0.282

500

25

3

2

0.000

0.069

0.987

0.979

1.000

0.024

0.136

500

25

3

3

0.000

0.103

0.970

0.985

0.932

0.030

0.285

500

45

4

2

0.000

0.060

0.988

0.985

0.995

0.021

0.160

500

15

2

2

0.250

0.095

0.969

0.908

1.000

0.041

0.122

500

15

2

3

0.250

0.155

0.989

0.983

0.994

0.024

0.259

500

25

3

2

0.250

0.067

0.988

0.980

0.999

0.025

0.131

500

25

3

3

0.250

0.158

0.945

0.956

0.917

0.070

0.380

500

45

4

2

0.250

0.050

0.993

0.991

0.998

0.015

0.137

500

15

2

2

0.500

0.099

0.969

0.908

1.000

0.042

0.128

500

15

2

3

0.500

0.143

0.980

0.962

0.994

0.038

0.227

500

25

3

2

0.500

0.198

0.906

0.856

0.982

0.172

0.237

500

25

3

3

0.500

0.282

0.873

0.862

0.900

0.189

0.515

500

45

4

2

0.500

0.117

0.952

0.943

0.973

0.071

0.234

1500

15

2

2

0.000

0.053

0.988

0.964

1.000

0.015

0.072

1500

15

2

3

0.000

0.139

0.977

0.967

0.986

0.040

0.218

1500

25

3

2

0.000

0.036

0.994

0.990

1.000

0.009

0.076

1500

25

3

3

0.000

0.069

0.980

0.990

0.956

0.016

0.202

1500

45

4

2

0.000

0.041

0.987

0.983

0.997

0.018

0.097

1500

15

2

2

0.250

0.051

0.990

0.969

1.000

0.016

0.069

1500

15

2

3

0.250

0.115

0.991

0.992

0.990

0.010

0.199

1500

25

3

2

0.250

0.033

0.995

0.992

1.000

0.008

0.071

1500

25

3

3

0.250

0.120

0.955

0.963

0.936

0.052

0.293

1500

45

4

2

0.250

0.026

0.997

0.995

1.000

0.007

0.076

1500

15

2

2

0.500

0.053

0.991

0.972

1.000

0.017

0.070

1500

15

2

3

0.500

0.101

0.987

0.982

0.991

0.016

0.168

1500

25

3

2

0.500

0.143

0.931

0.899

0.979

0.120

0.176

1500

25

3

3

0.500

0.257

0.866

0.848

0.911

0.188

0.433

1500

45

4

2

0.500

0.089

0.956

0.945

0.982

0.057

0.171

3000

15

2

2

0.000

0.035

0.996

0.987

1.000

0.007

0.049

3000

15

2

3

0.000

0.156

0.971

0.963

0.978

0.056

0.235

3000

25

3

2

0.000

0.023

0.997

0.995

1.000

0.004

0.052

3000

25

3

3

0.000

0.052

0.985

0.993

0.965

0.009

0.159

3000

45

4

2

0.000

0.033

0.988

0.985

0.996

0.015

0.077

3000

15

2

2

0.250

0.035

0.993

0.979

1.000

0.009

0.047

3000

15

2

3

0.250

0.102

0.990

0.993

0.988

0.006

0.179

3000

25

3

2

0.250

0.025

0.996

0.993

1.000

0.007

0.053

3000

25

3

3

0.250

0.112

0.955

0.961

0.939

0.048

0.276

3000

45

4

2

0.250

0.020

0.995

0.994

0.998

0.006

0.058

3000

15

2

2

0.500

0.037

0.992

0.977

1.000

0.010

0.051

3000

15

2

3

0.500

0.086

0.988

0.988

0.988

0.009

0.148

3000

25

3

2

0.500

0.167

0.905

0.861

0.972

0.156

0.183

3000

25

3

3

0.500

0.199

0.895

0.877

0.940

0.147

0.328

3000

45

4

2

0.500

0.057

0.971

0.965

0.988

0.033

0.119

  1. Values displayed for \(\beta\) parameters are the average, taken over all elements of the parameter, of the mean absolute error of estimation of each element over all replications. Values displayed for \(\delta\) parameters are the average, taken over all elements of the parameter, of the recovery accuracy of each element over all replications