Skip to main content
Log in

A family of the adjusted estimators maximizing the asymptotic predictive expected log-likelihood

  • Original Paper
  • Published:
Behaviormetrika Aims and scope Submit manuscript

Abstract

A family of the estimators adjusting the maximum likelihood estimator by a higher-order term maximizing the asymptotic predictive expected log-likelihood is introduced under possible model misspecification. The negative predictive expected log-likelihood is seen as the Kullback–Leibler distance plus a constant between the adjusted estimator and the population counterpart. The vector of coefficients in the correction term for the adjusted estimator is given explicitly by maximizing a quadratic form. Examples using typical distributions in statistics are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csáki F (eds) Proceedings of the 2nd international symposium on information theory. Académiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Bjornstad JF (1990) Predictive likelihood: a review. Stat Sci 5:242–265

    Article  MathSciNet  MATH  Google Scholar 

  • DeGroot MH, Schervish MJ (2002) Probability and statistics, 3rd edn. Addison-Wesley, Boston

    Google Scholar 

  • Fisher RA (1956) Statistical methods and scientific inference. Oliver and Boyd, Edinburgh

    MATH  Google Scholar 

  • Giles DEA, Rayner AC (1979) The mean squared errors of the maximum likelihood and natural-conjugate Bayes regression estimators. J Econometr 11:319–334

    Article  MathSciNet  MATH  Google Scholar 

  • Gruber MHJ (1998) Improving efficiency by shrinkage: The James-Stein and ridge regression estimators. Marcel Dekker, New York

    MATH  Google Scholar 

  • Hinkley D (1979) Predictive likelihood. Ann Stat 7:718–728

    Article  MathSciNet  MATH  Google Scholar 

  • Konishi S, Kitagawa G (1996) Generalized information criteria in model selection. Biometrika 83:875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Konishi S, Kitagawa G (2003) Asymptotic theory for information criteria in model selection—functional approach. J Stat Plan Inference 114:45–61

    Article  MathSciNet  MATH  Google Scholar 

  • Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. Springer, New-York

    Book  MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless JF, Fredette M (2005) Frequentist prediction intervals and predictive distributions. Biometrika 92:529–542

    Article  MathSciNet  MATH  Google Scholar 

  • Lejeune M, Faulkenberry GD (1982) A simple predictive density function. J Am Stat Assoc 77:654–657

    Article  MathSciNet  MATH  Google Scholar 

  • Leonard T (1982) Comment (on Lejeune & Faulkenberry, 1982). J Am Stat Assoc 77:657–658

    Google Scholar 

  • Ogasawara H (2010) Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory. J Multivar Anal 101:2149–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2013) Asymptotic cumulants of the estimator of the canonical parameter in the exponential family. J Stat Plan Inference 143:2142–2150

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2014a) Supplement to the paper “Asymptotic cumulants of the estimator of the canonical parameter in the exponential family”. Econ Rev (Otaru University of Commerce), 65 (2 & 3), 3–16. Permalink: http://hdl.handle.net/10252/5399. Accessed 20 Nov 2016

  • Ogasawara H (2014b) Optimization of the Gaussian and Jeffreys power priors with emphasis on the canonical parameters in the exponential family. Behaviormetrika 41:195–223

    Article  Google Scholar 

  • Ogasawara H (2015) Bias adjustment minimizing the asymptotic mean square error. Commun Stat Theory Methods 44:3503–3522

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2016) Optimal information criteria minimizing their asymptotic mean square errors. Sankhyā B 78:152–182

    Article  MathSciNet  MATH  Google Scholar 

  • Ogasawara H (2017) Asymptotic cumulants of some information criteria. J Jpn Soc Comput Stat (to appear)

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. Reidel, Dordrecht

    MATH  Google Scholar 

  • Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc B 39:44–47

    MathSciNet  MATH  Google Scholar 

  • Takeuchi K (1976) Distributions of information statistics and criteria of the goodness of models. Math Sci 153:12–18 (in Japanese)

    Google Scholar 

  • Takezawa K (2012) A revision of AIC for normal error models. Open J Stat 2:309–312

    Article  Google Scholar 

  • Takezawa K (2014) Estimation of the exponential distribution from a viewpoint of prediction. In: Proceedings of 2014 Japanese Joint Statistical Meeting, 305. University of Tokyo, Tokyo, Japan (in Japanese)

  • Takezawa K (2015) Estimation of the exponential distribution in the light of future data. Br J Math Comput Sci 5:128–132

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (JSPS KAKENHI, Grant No. 26330031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

Additional information

Communicated by Shuichi Kawano.

Appendix

Appendix

1.1 The asymptotic predictive expected log-likelihood for the maximum likelihood estimator

In this appendix, \( {\text{E}}_{\text{T}} (\hat{\bar{l}}_{\text{ML}}^{*} )_{{ \to O(n^{ - 2} )}} \) in (14) is obtained, where

\( {\text{E}}_{\text{T}} (\hat{\bar{l}}_{\text{ML}}^{*} ) = {\text{E}}_{\text{T}} \{ \bar{l}^{*} ({\hat{\varvec{\uptheta }}}_{\text{ML}} )\} = \int_{{R({\mathbf{X}})}} {\bar{l}^{*} \{ {\varvec{\uptheta}}_{\text{ML}} ({\mathbf{X}})\} f_{\text{T}} ({\mathbf{X}}|{\varvec{\upzeta}}_{0} ){\text{d}}{\mathbf{X}}} \) (see (10)). For this expectation, we use the expansion of \( {\hat{\varvec{\uptheta }}}_{\text{ML}} \) by Ogasawara (2010, p. 2151) as follows:

$$ {\hat{\varvec{\uptheta }}}_{\text{ML}} - {\varvec{\uptheta}}_{0} = \sum\limits_{j = 1}^{3} {{\varvec{\Lambda}}^{(j)} {\mathbf{l}}_{0}^{(j)} } + O_{p} (n^{ - 2} )\,\,\,({\varvec{\Lambda}}^{(j)} = O(1),\,\,{\mathbf{l}}_{0}^{(j)} = O_{p} (n^{ - j/2} ),\,\,\,j = 1,2,3\,), $$
$$ \begin{aligned} {\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} = - {\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}, \hfill \\ {\varvec{\Lambda}}^{(2)} {\mathbf{l}}_{0}^{(2)} = {\varvec{\Lambda}}^{ - 1} {\mathbf{M\Lambda }}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }} - \frac{1}{2}{\varvec{\Lambda}}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)^{ \langle 2 \rangle } \hfill \\ {\varvec{\Lambda}}^{(3)} {\mathbf{l}}_{0}^{(3)} = - {\varvec{\Lambda}}^{ - 1} {\mathbf{M\Lambda }}^{ - 1} {\mathbf{M\Lambda }}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }} + \frac{1}{2}{\varvec{\Lambda}}^{ - 1} {\mathbf{M\Lambda }}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)^{ \langle 2 \rangle } \hfill \\ \end{aligned} $$
$$ + {\varvec{\Lambda}}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\left\{ {\left( {{\varvec{\Lambda}}^{ - 1} {\mathbf{M\Lambda }}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right) \otimes \left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)} \right\} - \frac{1}{2}{\varvec{\Lambda}}^{ - 1} \{ {\mathbf{J}}_{0}^{(3)} - {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\} \left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)^{ \langle 2 \rangle } $$
$$ \begin{aligned} - \frac{1}{2}{\varvec{\Lambda}}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\left[ {\left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right) \otimes \left\{ {{\varvec{\Lambda}}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)^{ \langle 2 \rangle } } \right\}} \right] \hfill \\ + \frac{1}{6}{\varvec{\Lambda}}^{ - 1} {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(4)} )\left( {{\varvec{\Lambda}}^{ - 1} \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }}} \right)^{ \langle 3 \rangle } , \hfill \\ {\mathbf{J}}_{0}^{(i)} \equiv \frac{{\partial^{j} \bar{l}}}{{\partial {\varvec{\uptheta}}_{0} (\partial {\varvec{\uptheta}}_{0} ^{\prime })^{ \langle j - 1 \rangle } }} = O_{p} (1)\,\,\,(j = 3,4), \hfill \\ \end{aligned} $$
(129)
$$ \begin{aligned} {\mathbf{l}}_{0}^{(1)} = \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0} }},\,\,\,{\mathbf{l}}_{0}^{(2)} = \left\{ {{\text{v}}^{{\prime}} ({\mathbf{M}}) \otimes \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }},\,\,\,\left( {\frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }}} \right)^{ \langle 2 \rangle } } \right\}^{{\prime}} \equiv ({\mathbf{l}}_{0}^{(2 - 1)'} ,{\mathbf{l}}_{0}^{(2 - 2)'} )^{{\prime}} , \hfill \\ {\mathbf{l}}_{0}^{(3)} = \left[ {{\text{v}}^{{\prime}} ({\mathbf{M}})^{ \langle 2 \rangle } \otimes \frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }},\,\,\,{\text{v}}^{{\prime}} ({\mathbf{M}}) \otimes \left( {\frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }}} \right)^{ \langle 2 \rangle } } \right., \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,{\text{vec}}^{\prime} \{ {\mathbf{J}}_{0}^{(3)} - {\text{E}}_{\text{T}} ({\mathbf{J}}_{0}^{(3)} )\} \otimes \left( {\frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }}} \right)^{ \langle 2 \rangle } ,\,\,\,\,\left. {\left( {\frac{{\partial \,\bar{l}}}{{\partial \,{\varvec{\uptheta}}_{0}^{\prime} }}} \right)^{ \langle 3 \rangle } } \right]^{\prime} \hfill \\ \equiv ({\mathbf{l}}_{0}^{(3 - 1)'} ,{\mathbf{l}}_{0}^{(3 - 2)'} ,{\mathbf{l}}_{0}^{(3 - 3)'} ,{\mathbf{l}}_{0}^{(3 - 4)'} )^{{\prime}} , \hfill \\ \end{aligned} $$

where \( {\text{v}}( \cdot ) \) is the vectorizing operator taking the non-duplicated elements of a symmetric matrix and \( {\text{v}}^{{\prime}} ( \cdot ) = \{ {\text{v}}( \cdot )\}^{{\prime}} \).

Using (129), the matrices \( {\varvec{\Lambda}}^{(2 - j)} \,\,(j = 1,2) \) and \( {\varvec{\Lambda}}^{(3 - j)} \,\,(j = 1, \ldots ,4) \) are implicitly defined by

$$ {\varvec{\Lambda}}^{(2)} {\mathbf{l}}_{0}^{(2)} = \sum\limits_{j = 1}^{2} {{\varvec{\Lambda}}^{(2 - j)} {\mathbf{l}}_{0}^{(2 - j)} } ,\,\,\,{\varvec{\Lambda}}^{(3)} {\mathbf{l}}_{0}^{(3)} = \sum\limits_{j = 1}^{4} {{\varvec{\Lambda}}^{(3 - j)} {\mathbf{l}}_{0}^{(3 - j)} } . $$
(130)

The expectation to be derived is

$$ \begin{aligned} {\text{E}}_{\text{T}} (\hat{\bar{l}}_{\text{ML}}^{*} ) = \{ \bar{l}^{*} ({\varvec{\uptheta}}_{0} )\}_{O(1)} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \, {\text{E}}_{\text{T}} \left[ {\sum\limits_{j = 2}^{4} {\left\{ {\frac{{\partial^{j} \bar{l}^{*} }}{{j!(\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle j \rangle } }}({\hat{\varvec{\uptheta }}}_{\text{ML}} - {\varvec{\uptheta}}_{0} )^{ \langle j \rangle } } \right\}_{{O_{p} (n^{ - j/2} )}} } } \right]_{{ \to O(n^{ - 2} )}} +\, O(n^{ - 3} ). \hfill \\ \end{aligned} $$
(131)

In (131), the asymptotic expectation is derived term by term. In the following, the notation, e.g., \( ({\varvec{\Lambda}}^{(2 - 1)} )_{(e:ab,c,d)} \) indicates an element of \( {\varvec{\Lambda}}^{(2 - 1)} \) corresponding to the e-th row and the column denoted by “ab, c, d” which corresponds to \( ({\mathbf{M}})_{ab} \,\,(a \ge b),\,\,\,\partial \bar{l}/\partial ({\varvec{\uptheta}}_{0} )_{c} \) and \( \partial \bar{l}/\partial ({\varvec{\uptheta}}_{0} )_{d} \) in \( {\mathbf{l}}_{0}^{(2 - 1)} \). The notation, e.g., \( \sum\nolimits_{(g,\,h)}^{(2)} {} \) indicates the summation of two terms exchanging g and h; \( \sum\limits_{a \ge b}^{{}} {( \cdot )} \equiv \sum\limits_{b = 1}^{q} {\sum\limits_{a = b}^{q} {( \cdot )} } \); and \( \lambda^{ab} = ({\varvec{\Lambda}}^{ - 1} )_{ab} \).

  1. 1.
    $$ \begin{aligned} {\text{E}}_{\text{T}} \left\{ {\frac{1}{2}\frac{{\partial^{2} \bar{l}^{*} }}{{(\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle 2 \rangle } }}({\hat{\varvec{\uptheta }}}_{\text{ML}} - {\varvec{\uptheta}}_{0} )^{ \langle 2 \rangle } } \right\} \hfill \\ = \frac{1}{2}n^{ - 1} {\text{vec}}^{{\prime}} ({\varvec{\Lambda}})n{\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} )^{ \langle 2 \rangle } \} \hfill \\ \,\,\, + \frac{1}{2}n^{ - 2} {\text{vec}}^{{\prime}} ({\varvec{\Lambda}})\bigg[ {2n^{2} } {\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(2)} {\mathbf{l}}_{0}^{(2)} ) \otimes ({\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} )\} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 2n^{2} {\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(3)} {\mathbf{l}}_{0}^{(3)} ) \otimes ({\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} )\} + n^{2} {{\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(2)} {\mathbf{l}}_{0}^{(2)} )^{ \langle 2 \rangle } \} } \bigg] \hfill \\ \,\,\, + O(n^{ - 3} ) \hfill \\ \end{aligned} $$
    (132)
$$ \begin{aligned} = \frac{{n^{ - 1} }}{2}{\text{tr}}({\varvec{\Gamma \Lambda }}^{ - 1} ) \hfill \\ + n^{ - 2} \sum\limits_{a,b = 1}^{q} {\lambda_{ab} } \mathop {\bigg[ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } }\limits_{({\text{A}})} \sum\limits_{c \ge d} {\sum\limits_{e,f = 1}^{q} {n^{2} } } {\text{E}}_{\text{T}} \{ m_{cd} ({\mathbf{l}}_{0}^{(1)} )_{e} ({\mathbf{l}}_{0}^{(1)} )_{f} \} ({\varvec{\Lambda}}^{(2 - 1)} )_{(a\colon\,\,cd,e)} ( - \lambda^{bf} ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{c,d,e = 1}^{q} {n^{2} } {\text{E}}_{\text{T}} \{ ({\mathbf{l}}_{0}^{(1)} )_{c} ({\mathbf{l}}_{0}^{(1)} )_{d} ({\mathbf{l}}_{0}^{(1)} )_{e} \} ({\varvec{\Lambda}}^{(2 - 2)} )_{(a\colon\,\,\,c,d)} ( - \lambda^{be} ) \hfill \\ \end{aligned} $$
$$ \begin{aligned} + \sum\limits_{c \ge d} {\sum\limits_{e \ge f} {\sum\limits_{g,h = 1}^{q} {({\varvec{\Lambda}}^{(3 - 1)} )_{(a\colon\,\,cd,ef,g)} } } } ( - \lambda^{bh} )\,\bigg[ {n\,{\text{acov}}\{ m_{cd} ,m_{ef} \} \gamma_{gh} } \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{(g,h)}^{2} {n\,{\text{acov}}\{ m_{cd} ,({\mathbf{l}}_{0}^{(1)} )_{g} \} } {n\,{\text{acov}}\{ m_{ef} ,({\mathbf{l}}_{0}^{(1)} )_{h} \} } \bigg] \hfill \\ + \sum\limits_{c \ge d} {\sum\limits_{e,f,g = 1}^{q} {({\varvec{\Lambda}}^{(3 - 2)} )_{(a\colon\,\,cd,e,f)} } } ( - \lambda^{bg} )\sum\limits_{(e,f,g)}^{3} {n\,{\text{acov}}\{ m_{cd} ,({\mathbf{l}}_{0}^{(1)} )_{e} \} } \gamma_{fg} \hfill \\ + \sum\limits_{c,d,e,f,g,h = 1}^{q} {({\varvec{\Lambda}}^{(3 - 3)} )_{(a\colon\,\,cde,f,g,h)} } ( - \lambda^{bh} )\sum\limits_{(f,g,h)}^{3} {n\,{\text{acov}}\{ ({\mathbf{J}}_{0}^{(3)} )_{(c,d,e)} ,({\mathbf{l}}_{0}^{(1)} )_{f} \} } \gamma_{gh} \hfill \\ + \sum\limits_{c,d,e,f = 1}^{q} {({\varvec{\Lambda}}^{(3 - 4)} )_{(a\colon\,\,c,d,e)} } ( - \lambda^{bf} )(\gamma_{cd} \gamma_{ef} + \gamma_{ce} \gamma_{df} + \gamma_{cf} \gamma_{de} ) \hfill \\ \end{aligned} $$
$$ \begin{aligned} + \frac{1}{2}\mathop {\left[ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.}\limits_{({\text{B}})} \sum\limits_{c \ge d} {\sum\limits_{e \ge f} {\sum\limits_{g,h = 1}^{q} {({\varvec{\Lambda}}^{(2 - 1)} )_{(a\colon\,\,cd,g)} } } } ({\varvec{\Lambda}}^{(2 - 1)} )_{(b\colon\,\,ef,h)} \left[ {n\,{\text{acov}}(m_{cd} ,m_{ef} )} \right.\gamma_{gh} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sum\limits_{(g,h)}^{2} {n\,{\text{acov\{ }}m_{cd} ,({\mathbf{l}}_{0}^{(1)} )_{g} \} \left. {n\,{\text{acov\{ }}m_{ef} ,({\mathbf{l}}_{0}^{(1)} )_{h} \} } \right]} \hfill \\ + 2\sum\limits_{c \ge d} {\sum\limits_{e,f,g = 1}^{q} {({\varvec{\Lambda}}^{(2 - 1)} )_{(a\colon\,\,cd,e)} } } ({\varvec{\Lambda}}^{(2 - 2)} )_{(b\colon\,\,f,g)} \sum\limits_{(e,f,g)}^{3} {n\,{\text{acov\{ }}m_{cd} ,({\mathbf{l}}_{0}^{(1)} )_{e} \} } \gamma_{fg} \hfill \\ + \sum\limits_{c,d,e,f = 1}^{q} {({\varvec{\Lambda}}^{(2 - 2)} )_{(a\colon\,\,c,d)} ({\varvec{\Lambda}}^{(2 - 2)} )_{(b\colon\,\,e,f)} } (\gamma_{cd} \gamma_{ef} + \gamma_{ce} \gamma_{df} + \gamma_{cf} \gamma_{de} )\mathop {\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right]}\limits_{{({\text{B}})}} \mathop {\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right]}\limits_{{({\text{A}})}} + O(n^{ - 3} ), \hfill \\ \end{aligned} $$

where, e.g., \( \mathop [\limits_{{({\text{A}})}} \cdot \mathop ]\limits_{{({\text{A}})}} \) is for ease of finding correspondence.

  1. 2.
    $$ \begin{aligned} {\text{E}}_{\text{T}} \left\{ {\frac{1}{6}\frac{{\partial^{3} \bar{l}^{*} }}{{(\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle 3 \rangle } }}({\hat{\varvec{\uptheta }}}_{\text{ML}} - {\varvec{\uptheta}}_{0} )^{ \langle 3 \rangle } } \right\} \hfill \\ = n^{ - 2} \frac{{\partial^{3} \bar{l}^{*} }}{{(\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle 3 \rangle } }}\left[ {\frac{{n^{2} }}{6}{\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} )^{ \langle 3 \rangle } \} + \frac{{n^{2} }}{2}{\text{E}}_{\text{T}} \{ ({\varvec{\Lambda}}^{(2)} {\mathbf{l}}_{0}^{(2)} ) \otimes ({\varvec{\Lambda}}^{(1)} {\mathbf{l}}_{0}^{(1)} )^{ \langle 2 \rangle } \} } \right] \hfill \\ \,\,\, + O(n^{ - 3} ) \hfill \\ \end{aligned} $$
    (133)
$$ \begin{aligned} = n^{ - 2} \sum\limits_{a,b,c = 1}^{q} {\frac{{\partial^{3} \bar{l}^{*} }}{{\partial \theta_{0a} \partial \theta_{0b} \partial \theta_{0c} }}} \mathop {\left[ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.}\limits_{{({\text{A}})}} \frac{1}{6}\sum\limits_{d,e,f = 1}^{q} {( - \lambda^{ad} )( - \lambda^{be} )( - \lambda^{cf} )} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times n^{2} {\text{E}}_{\text{T}} \{ ({\mathbf{l}}_{0}^{(1)} )_{d} ({\mathbf{l}}_{0}^{(1)} )_{e} ({\mathbf{l}}_{0}^{(1)} )_{f} \} \hfill \\ + \frac{1}{2}\mathop {\left[ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right.}\limits_{{({\text{B}})}} \sum\limits_{d \ge e} {\sum\limits_{f,g,h = 1}^{q} {({\varvec{\Lambda}}^{(2 - 1)} )_{(a\colon\,\,de,f)} } } ( - \lambda^{bg} )( - \lambda^{ch} )\sum\limits_{(f,g,h)}^{3} {n\,{\text{acov}}\{ m_{de} ,({\mathbf{l}}_{0}^{(1)} )_{f} \} } \gamma_{gh} \hfill \\ \,\,\, + \sum\limits_{d,e,f,g = 1}^{q} {({\varvec{\Lambda}}^{(2 - 2)} )_{(a\colon\,\,d,e)} } ( - \lambda^{bf} )( - \lambda^{cg} )(\gamma_{de} \gamma_{fg} + \gamma_{df} \gamma_{eg} + \gamma_{dg} \gamma_{ef} )\mathop {\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right]}\limits_{({\text{B}})} \mathop {\left. {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \right]}\limits_{({\text{A}})} \,\,\, + O(n^{ - 3} ). \hfill \\ \end{aligned} $$
  1. 3.
    $$ \begin{aligned} {\text{E}}_{\text{T}} \left\{ {\frac{1}{24}\frac{{\partial^{4} \bar{l}^{*} }}{{(\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle 4 \rangle } }}({\hat{\varvec{\uptheta }}}_{\text{ML}} - {\varvec{\uptheta}}_{0} )^{ \langle 4 \rangle } } \right\} \hfill \\ \,\,\,\,\,\,\,\, = \frac{{n^{ - 2} }}{8}{\text{vec}}^{{\prime}} ({\varvec{\Lambda}}^{ - 1} {\varvec{\Gamma \Lambda }}^{ - 1} )\frac{{\partial^{4} \bar{l}^{*} }}{{(\partial {\varvec{\uptheta}}_{0} )^{ \langle 2 \rangle } (\partial {\varvec{\uptheta}}_{0}^{\prime} )^{ \langle 2 \rangle } }}\,{\text{vec}}({\varvec{\Lambda}}^{ - 1} {\varvec{\Gamma \Lambda }}^{ - 1} )\,\, +\, O(n^{ - 3} ). \hfill \\ \end{aligned} $$
    (134)

In 1, 2 and 3, when the model is true \( {\text{E}}_{\text{T}} ( \cdot ) = {\text{E}}_{{\theta_{0} }} ( \cdot ) \) and \( - {\varvec{\Lambda}} = {\varvec{\Gamma}} = {\mathbf{I}}_{0} \). Especially, the term of order \( O(n^{ - 1} ) \) becomes

$$ \frac{{n^{ - 1} }}{2}{\text{tr}}({\varvec{\Gamma \Lambda }}^{ - 1} ) = - n^{ - 1} \frac{q}{2} . $$
(135)

That is, the expectation is asymptotically smaller than \( \bar{l}^{*} ({\varvec{\uptheta}}_{0} ) = \bar{l}_{0}^{*} \) by \( n^{ - 1} q/2 \) up to this order.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, H. A family of the adjusted estimators maximizing the asymptotic predictive expected log-likelihood. Behaviormetrika 44, 57–95 (2017). https://doi.org/10.1007/s41237-016-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41237-016-0004-6

Keywords

Navigation