Abstract
Spatial variations in the phytoplankton community compositions, carbon dioxide system and ancillary water column properties, were monitored across various frontal systems in the Indian Sector of Southern Ocean (ISSO) during austral summer 2013. Four major frontal systems, namely, the Agulhas Return Front (ARF), Southern Subtropical Front (SSTF), Subantarctic Front (SAF) and Polar Front (PF) were identified along the study area. Major groups of phytoplankton were distinguished adopting single marker pigment approach. Statistical computations showed the distribution of diatoms were influenced by the availability of inorganic nutrients (primarily silicate and nitrate) and mixed layer depths (MLD). Haptophytes were strongly dependent on phosphate availability, whereas, picoplankton flourished in water where regenerated nutrient ammonium was present. The lowest surface pCO2 (267.26–291.5 µatm) along with in situ oxygen production (> 10 µM) was encountered at the two warmer fronts, ARF and SSTF, dominated by haptophytes and picoplankton. The colder Antarctic fronts, SAF and PF were dominated by diatoms where surface pCO2 was relatively higher (> 350µatm). Poor statistical correlation among temperature and total chlorophyll with pCO2 revealed complex interplay of multiple factors. Contribution of major phytoplankton groups towards pCO2 drawdown was computed using a one-dimensional model describing the relative contributions of biological activities. In ISSO, calcifying and photosynthesizing haptophytes were observed to play a crucial role in the “biological pump” of CO2 drawdown at ARF, SSTF and SAF, while the silicifying micro phytoplankton diatoms and picoplankton were more effective at PF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The data used in the present study will be archived at the National Polar Data Centre maintained by NCPOR, India (http://npdc.ncaor.gov.in/npdc/homepage.action) and made available on request to the corresponding author.
References
Andersen RA, Bidigare RR, Keller MD, Latasa M (1996) A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Res Part II 43(2):517–537. https://doi.org/10.1016/0967-0645(95)00095-X
Anilkumar N, Dash MK, Luis AJ, Babu VR, Somayajulu YK, Sudhakar M, Pandey PC (2005) Oceanic fronts along 45oE across Antarctic Circumpolar Current during austral summer 2004. Curr Sci 1669–1673. https://www.jstor.org/stable/24110494
Anilkumar N, Luis AJ, Somayajulu YK, Babu VR, Dash MK, Pednekar SM, Babu KN, Sudhakar M, Pandey PC (2006) Fronts, water masses and heat content variability in the Western Indian sector of the Southern Ocean during austral summer 2004. J Mar Syst 63(1):20–34. https://doi.org/10.1016/j.jmarsys.2006.04.009
Anilkumar N, George JV, Chacko R, Nuncio N, Sabu P (2015) Variability of fronts, fresh water input and chlorophyll in the Indian Ocean sector of the Southern Ocean. NZ J Mar Freshwat Res 49(1):20–40. https://doi.org/10.1080/00288330.2014.924972
Arpin N, Svec WA, Liaaen-Jensen S (1976) New fucoxanthin-related carotenoids from Coccolithus huxleyi. Phytochemistry 15(4):529–532. https://doi.org/10.1016/S0031-9422(00)88964-5
Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35(19):19603. https://doi.org/10.1029/2008GL035028
Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. https://www.jstor.org/stable/24814647
Bakker DC, Pfeil B, Landa CS, Metzl N, O'brien KM, Olsen A, Smith K, Cosca C, Harasawa S, Jones SD, Nakaoka SI (2016) A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 8(2):383–413
Bakker DCE, Hoppema M, Schröder M, Geibert W, De Baar HJ (2008) A rapid transition from ice covered CO 2-rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre. Biogeosci Discuss 5(2):1205–1235. https://doi.org/10.5194/bg-5-1373-2008
Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on Moderate Resolution Imaging Spectroradiometer data. J Geophys Res Oceans 110(C7). https://doi.org/10.1029/2004JC002560
Barlow R, Stuart V, Lutz V, Sessions H, Sathyendranath S, Platt T, Kyewalyanga M, Clementson L, Fukasawa M, Watanabe S, Devred E (2007) Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep Sea Res Part I 54(10):1687–1703. https://doi.org/10.1016/j.dsr.2007.06.010
Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res Oceans 101(C2):3675–3696. https://doi.org/10.1029/95JC02750
Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632. https://doi.org/10.4319/lo.1984.29.3.0620
Brewin RJ, Sathyendranath S, Hirata T, Lavender SJ, Barciela RM, Hardman-Mountford NJ (2010) A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol Modell 10:221(11):1472–1483. https://doi.org/10.1010/j.ecomodel.2010.02.014
Buitenhuis ET, van der Wal P, de Baar HJ (2001) Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: A field and mesocosm study derived simulation. Global Biogeochem Cycles 15(3):577–587. https://doi.org/10.1029/2000GB001292
Cailliau C, Claustre H, Giannino S (1997) Chemotaxonomic analysis of phytoplankton distribution in the Indian sector of the Southern Ocean during late austral summer. Oceanolica Acta 20(5):721–732. https://archimer.ifremer.fr/doc/00093/20430/
Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis. Limnol Oceanogr 10(1):135–140. https://doi.org/10.4319/lo.1965.10.1.0135
Cochlan, WP (2008) Nitrogen uptake in the Southern Ocean. In: Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (ed) Nitrogen in the Marine Environment, 2nd edn, Academic Press, Elsevier, 569–596. https://doi.org/10.1016/B978-0-12-372522-6.00012-8
Dandonneau Y, Montel Y, Blanchot J, Giraudeau J, Neveux J (2006) Temporal variability in phytoplankton pigments, picoplankton and coccolithophores along a transect through the North Atlantic and tropical southwestern Pacific. Deep Sea Res Part I 53(4):689–712. https://doi.org/10.1016/j.dsr.2006.01.002
Deutsch C, Weber T (2012) Nutrient ratios as a tracer and driver of ocean biogeochemistry. Ann Rev Mar Sci 4:113–141. https://doi.org/10.1146/annurev-marine-120709-142821
Dickson AG, Goyet C (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, Version 2. Oak Ridge National Lab., TN (United States)117–124. https://doi.org/10.2172/10107773
Fofonoff NP, Millard RC (1983) Algorithms for computation of fundamental properties of seawater UNESCO Technical Papers in Marine Science, No 44, 53. http://hdl.handle.net/11329/109
Fogg GE (1991) The phytoplanktonic ways of life. New Phytol 118(2):191–232. https://doi.org/10.1111/j.1469-8137.1991.tb00974.x
Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M (2015) Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim 28(2):862–886. https://doi.org/10.1175/JCLI-D-14-00117.1
Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK, Zweng MM, Reagan JR, Johnson DR (2014) World Ocean Atlas 2013. In: Levitus S (ed) Dissolved Inorganic Nutrients (phosphate, nitrate, silicate), A Mishonov Technical Ed, Volume 4:NOAA Atlas NESDIS 76:25. https://archimer.ifremer.fr/doc/00651/76336/
Giddy IS, Swart S, Tagliabue A (2012) Drivers of non-Redfield nutrient utilization in the Atlantic sector of the Southern Ocean. Geophys Res Lett 39(17). https://doi.org/10.1029/2012GL052454
Gieskes JM (1969) Effect of temperature on the pH of seawater. Limnol Oceanogr 14(5):679–685. https://doi.org/10.4319/lo.1969.14.5.0679
Gieskes WWC, Kraay GW (1983) Dominance of Cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Mar Biol 75(2–3):179–185. https://doi.org/10.1007/BF00406000
Gieskes WWC, Elbrächter M (1986) Abundance of nanoplankton-size chlorophyll-containing particles caused by diatom disruption in surface waters of the Southern Ocean (Antarctic Pensinsula region). Neth J Sea Res 20(2):291–303. https://doi.org/10.1016/0077-7579(86)90051-7
Goyet C, Healy R, Ryan J, Kozyr A (2000) Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths. (No ORNL/CDIAC-127; NDP-076) Oak Ridge National Lab, TN (US). https://doi.org/10.2172/760546
Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, JacobsonAR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cy 23(1). https://doi.org/10.1029/2008GB003349
Gupta AK, Gupta SK, Patil RS (2005) Statistical analyses of coastal water quality for a port and harbour region in India. Environ Monit Assess 102(1–3):179–200. https://doi.org/10.1007/s10661-005-6021-7
Haraldsson C, Anderson LG, Hassellöv M, Hulth S, Olsson K (1997) Rapid, high-precision potentiometric titration of alkalinity in ocean and sediment pore waters. Deep Sea Res Part I 44(12):2031–2044. https://doi.org/10.1016/S0967-0637(97)00088-5
Holliday NP, Read JF (1998) Surface oceanic fronts between Africa and Antarctica. Deep Sea Res Part I 45(2):217–238. https://doi.org/10.1016/S0967-0637(97)00081-2
Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393(6685):561–564. https://doi.org/10.1038/31203
Iyer CSP, Sindhu M, Kulkarni SG, Tambe SS, Kulkarni BD (2003) Statistical analysis of the physico–chemical data on the coastal waters of Cochin. J Environ Monit 5(2):324–327. https://doi.org/10.1039/B209219K
Jaccard SL, Hayes CT, Martínez-García A, Hodell DA, Anderson RF, Sigman DM, Haug GH (2013) Two modes of change in Southern Ocean productivity over the past million years. Science 339(6126):1419–1423. https://doi.org/10.1126/science.1227545
Jacques G, Fukuchi M (1994) Phytoplankton of the Indian Antarctic Ocean Southern Ocean ecology: the BIOMASS perspective Cambridge University Press. Cambridge 63–78. https://doi.org/10.1017/S0954102094240646
Jasmine P, Muraleedharan KR, Madhu NV, Devi CA, Alagarsamy R, Achuthankutty CT, Jayan Z, Sanjeevan VN, Sahayak S (2009) Hydrographic and productivity characteristics along 45 E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004. Mar Ecol Prog Ser 389:97–116. http://www.jstor.org/stable/24873605
Johnson KM, Dickson AG, Eischeid G, Goyet C, Guenther P, Key RM, Millero FJ, Purkerson D, Sabine CL, Schottle RG, Wallace DW (1998) Coulometric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO 2 Survey 1994–1996. Mar Chem 63(1):21–37. https://doi.org/10.1016/S0304-4203(98)00048-6
Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462(7271):346–349. https://doi.org/10.1038/nature08526
Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH (2012) A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol 166(7):1843–1855. https://doi.org/10.1007/s12010-012-9602-2
Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DC, Van Heuven S, Hoppema M, Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R (2015) The reinvigoration of the Southern Ocean carbon sink. Science 349(6253):1221–1224. https://doi.org/10.1126/science.aab2620
Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316(5832):1735–1738. https://doi.org/10.1126/science.1136188
Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park GH, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. Geophys Res Lett 33(19). https://doi.org/10.1029/2006GL027207
Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. RepORNL/CDIAC-105, Carbon Dioxide Inf Anal Cent, Oak Ridge Natl Lab, US Dep of Energy, Oak Ridge, TN. https://doi.org/10.15485/1464255
Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a black foot disease area in Taiwan. Sci Total Environ 313(1):77–89. https://doi.org/10.1016/S0048-9697(02)00683-6
Louanchi F, Metzl N, Poisson A (1996) Modelling the monthly sea surface fCO2 fields in the Indian Ocean. Mar Chem 55(3):265–279. https://doi.org/10.1016/S0304-4203(96)00066-7
Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70(1):105–119. https://doi.org/10.1016/S0304-4203(00)00022-0
Mann KH, Lazier JRN (1996) Dynamics of marine ecosystems: biological physical interactions in the oceans. Blackwell Science, Cambridge, MA, USA
Mendes CRB, Kerr R, Tavano VM, Cavalheiro FA, Garcia CAE, Dessai DRG, Anilkumar N (2015) Cross-front phytoplankton pigments and chemotaxonomic groups in the Indian sector of the Southern Ocean. Deep Sea Res Part II 118:221–232. https://doi.org/10.1016/j.dsr2.2015.01.003
Metzl N, Brunet C, Jabaud-Jan A, Poisson A, Schauer B (2006) Summer and winter air–sea CO 2 fluxes in the Southern Ocean. Deep Sea Res Part I 53(9):1548–1563. https://doi.org/10.1016/j.dsr.2006.07.006
Millero FJ, Lee K, Roche M (1998) Distribution of alkalinity in the surface waters of the major oceans. Mar Chem 60(1):111–130. https://doi.org/10.1016/S0304-4203(97)00084-4
Mishra RK, Jena B, Anilkumar NP, Sinha RK (2017) Shifting of phytoplankton community in the frontal regions of Indian Ocean sector of the Southern Ocean using in situ and satellite data. J Appl Remote Sens 11(1):016019–016019. https://doi.org/10.1117/1.JRS.11.016019
Monier A, Welsh RM, Gentemann C, Weinstock G, Sodergren E, Armbrust E, Eisen JA, Worden AZ (2012) Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol 14(1):162–176. https://doi.org/10.1111/j.1462-2920.2011.02576.x
Monterey GI, Levitus S (1997) Climatological cycle of mixed layer depth in the world ocean. US Government Printing Office, NOAA NESDIS, 5
Olsen A, Key RM, Van Heuven S, Lauvset SK, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Pérez FF, Suzuki T (2016) The Global Ocean Data Analysis Project version 2 (GLODAPv2) - an internally consistent data product for the world ocean. Earth Syst Sci Data 8:297–323. https://doi.org/10.5194/essd-8-297-2016
Orsi AH, Whitworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I 42(5):641–673. https://doi.org/10.1016/0967-0637(95)00021-W
Paasche E, Brubak S (1994) Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 33(5):324–330. https://doi.org/10.2216/i0031-8884-33-5-324.1
Prasanna K, Ghosh P, Kumar NA (2015) Stable isotopic signature of Southern Ocean deep water CO2 ventilation. Deep Sea Res Part II 118:177–185. https://doi.org/10.1016/j.dsr2.2015.04.009
Probyn TA (1985) Nitrogen uptake by size-fractionated phytoplankton populations in the southern benguela upwelling system. Marine ecology progress series. Oldendorf 22(3):249–258. https://doi.org/10.4319/lo.1985.30.6.1327
Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein H.R., Young J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_5
Sarma VVSS, Delabehra HB, Sudharani P, Remya R, Patil JS, Desai DV (2015) Variations in the inorganic carbon components in the thermal fronts during winter in the northeastern Arabian Sea. Mar Chem 169:16–22. https://doi.org/10.1016/j.marchem.2014.12.009
Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308(5960):621–624. https://doi.org/10.1038/308621a0
Sarmiento JÁ, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427(6969):56–60. https://doi.org/10.1038/nature02127
Schlüter L, Henriksen P, Nielsen TG, Jakobsen HH (2011) Phytoplankton composition and biomass across the southern Indian Ocean. Deep Sea Res Part I 58(5):546–556. https://doi.org/10.1016/j.dsr.2011.02.007
Seoane S, Zapata M, Orive E (2009) Growth rates and pigment patterns of haptophytes isolated from estuarine waters. J Sea Res 62(4):286–294. https://doi.org/10.1016/j.seares.2009.07.008
Shetye S, Sudhakar M, Ramesh R, Mohan R, Patil S, Laskar A (2012) Sea surface pCO2 in the Indian sector of Southern Ocean during austral summer of 2009. Advances in Geosciences: Vol 28: Atmospheric Science and Ocean Sciences (2011) Eds Chun-Chieh Wu and Jianping Gan 79–92. https://doi.org/10.1142/9789814405683_0007
Shetye SS, Mohan R, Patil S, Jena B, Chacko R, George JV, Noronha S, Singh N, Priya L, Sudhakar M (2015) Oceanic pCO2 in the Indian sector of the Southern Ocean during the austral summer–winter transition phase. Deep Sea Res Part II 118:250–260. https://doi.org/10.1016/j.dsr2.2015.05.017
Shiomoto A, Sasaki K, Shimoda T, Matsumura S (1994) Kinetics of nitrate and ammonium uptake by the natural populations of marine phytoplankton in the surface water of the Oyashio region during spring and summer. J Oceanogr 50(5):515–529. https://doi.org/10.1007/BF02235421
Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150(1):25–32. https://doi.org/10.1016/S1434-4610(99)70006-4
Smith WO, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J Geophys Res Oceans 113(C5). https://doi.org/10.1029/2007JC004251
Stramma L, Ikeda Y, Peterson RG (1990) Geostrophic transport in the Brazil Current region north of 20 ˚S. Deep-Sea Res 1875–1886. https://doi.org/10.1016/0198-0149(90)90083-8
Stawiarski B, Buitenhuis ET, Quéré Le C (2016) The physiological response of picophytoplankton to temperature and its model representation. Front Mar Sci 3. https://doi.org/10.3389/fmars.2016.00164
Takahashi T, Sweeney C, Hales B, Chipman DW, Newberger T, Goddard JG, Iannuzzi RA, Sutherland SC (2012) The changing carbon cycle in the Southern Ocean. Oceanography 25(3):26–37. https://www.jstor.org/stable/24861390
Timmermans KR, Van Der Wagt B, De Baar HJ (2004) Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol Oceanogr 49(6):2141–2151. https://doi.org/10.4319/lo.2004.49.6.2141
Tripathy SC, Pavithran S, Sabu P, Pillai HUK, Dessai DRG, Anilkumar N (2015) Deep chlorophyll maximum and primary productivity in Indian Ocean sector of the Southern Ocean: Case study in the Subtropical and Polar Front during austral summer 2011. Deep Sea Res Part II 118:240–249. https://doi.org/10.1016/j.dsr2.2015.01.004
Uitz J, Claustre H, Morel A, Hooker SB (2006) Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res Oceans 111(C8). https://doi.org/10.1029/2005JC003207
Van Heukelem L, Thomas CS, Gilbert PM, Fargion GS, McClain CR (2002) Sources of variability in chlorophyll analysis by fluorometry and high-performance liquid chromatography in a SIMBIOS intercalibration exercise. NASA Tech Memo 2002-211606
Van Leeuwe MA, Kattner G, van Oijen T, de Jong JT, de Baar HJ (2015) Phytoplankton and pigment patterns across frontal zones in the Atlantic sector of the Southern Ocean. Mar Chem 177:510–517. https://doi.org/10.1016/j.marchem.2015.08.003
Van Lenning K, Probert I, Latasa M, Estrada M, Young JR (2004) Pigment diversity of coccolithophores in relation to taxonomy, phylogeny and ecological preferences. In: Coccolithophores, Springer Berlin Heidelberg, 51–73. https://doi.org/10.1016/j.marchem.2015.08.003
Vidussi F, Claustre H, Manca BB, Luchetta A, Marty JC (2001) Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J Geophys Res Oceans 106(C9):19939–19956. https://doi.org/10.1029/1999JC000308
Volk T, Hoffert MI (1985) Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present 99–110. https://doi.org/10.1029/GM032p0099
Weber TS, Deutsch C (2010) Ocean nutrient ratios governed by plankton biogeography. Nature 467(7315):550–554. https://doi.org/10.1038/nature09403
Williams RG, Follows MJ (2003) Physical transport of nutrients and the maintenance of biological production. In: Fasham, MJR (Ed), Ocean Biogeochemistry; The Role of the Ocean Carbon Cycle in Global Change IGBP series Springer, Berlin. https://doi.org/10.1007/978-3-642-55844-3_3
Winter A, Elbrächter M, Krause G (1999) Subtropical coccolithophores in the Weddell Sea. Deep Sea Res Part I 46(3):439–449. https://doi.org/10.1016/S0967-0637(98)00076-4
Wright SW, Jeffrey SW (1987) Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar Ecol Prog Ser 38(3):259–266. https://www.jstor.org/stable/24825629
Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the\’CHEMTAX\’matrix factorisation program. Mar Ecol Prog Ser 144:285–298. https://doi.org/10.3354/meps144285
Acknowledgements
This work was carried out during India’s 7th Expedition to Southern Ocean organized by ESSO-NCPOR, Goa and funded by Ministry of Earth Sciences, Government of India. Sincere thanks to Dr S. K. Baliarsingh, ESSO-INCOIS, Hyderabad for support with the statistical analysis. Dr. V. V. S. S. Sarma, NIO-RC Vizag, India is gratefully acknowledged for thoughtful discussion in using the Louanchi model. On behalf of all authors, the corresponding author states that there is no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sarkar, A., Mishra, R., Bhaskar, P.V. et al. Potential Role of Major Phytoplankton Communities on pCO2 Modulation in the Indian Sector of Southern Ocean. Thalassas 37, 531–548 (2021). https://doi.org/10.1007/s41208-021-00323-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41208-021-00323-2