Skip to main content
Log in

Depth-Dependent Pigment Fluctuations in the Agarophyte Gracilaria corticata at Intertidal Waters

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

Red macroalgae from the genus Gracilaria (agarophytes) are of ecological and pharmaceutical importance particularly for agar production. In this study, the red, agarophyte alga Gracilaria corticata was investigated for fluctuations of main and accessory pigments and total carotenoids at two depths during its growing season. The alga was sampled from coastal waters in Brice coast, Chabahar, southern Iran, from December to March in shallow (2–3 m) and higher (5–6 m) depths. The accessory pigments (phycoerythrin, phycocyanin and alophycocyanin), chlorophyll a, and total carotenoids were extracted three times using appropriate solvents and estimated through spectroscopy (mg g−1 dry weight). All pigments of G. corticata increased with depth showing significant differences between the two depths (p < 0.05). Phycoerythrin and phycocyanin were utmost at a depth of 5–6 m in December and January. The highest allophycocyanin and chlorophyll a contents were found at a depth of 5–6 m in February, and total carotenoids were of greatest values at depths of 2–3 m and 5–6 m in March and February, respectively (p < 0.05). The pigment ratios (phycobilin/chlorophyll and total carotenoids/chlorophyll a) at the two depths displayed marked monthly variations (p < 0.05). The greatest phycobilin/chlorophyll a (0.4 ± 0.2418) was found in December (5–6 m) and the ratio of carotenoids/chlorophyll a (0.31 ± 0.0058) was highest in March (2–3 m). The remarkable increases in major and accessory pigments with depth could indicate maximum biomass and production of G. corticata, especially in the months of February and March, which is important for field harvesting operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abidizadegan M, Khalesi MK, Ajdari D (2016) Depth-dependency of the agarophyte red alga Gracilaria Corticata J. Agardh for agar yield and quality during its growing season. J. Aquacul. Engin. Fish Res 2(2):76–84

    Google Scholar 

  • Aguilera J, Bischof K, Karsten U et al (2002) Seasonal variation in the ecophysiological patterns in macroalgae from an artic fjord. II. Pigment accumulation and biochemical defence system against high light stress. Mar Biol 140:1087–1095

    Article  Google Scholar 

  • Arasaki S, Arasaki T (1981) Vegetables from the sea (low calorie, high nutrition. To help you look and feel better). 1st ed. Japan pub., Tokyo

  • Bansemir A, Blume M, Schroder S et al (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252(1):79–84. https://doi.org/10.1016/j.aquaculture.2005.11.051

    Article  Google Scholar 

  • Cabello-Pasini A, Aguirre-Von-Wobeser E, Figueroa F (2000) Photoinhibition of photosynthesis in Macrosystis pyrifera (Phaeophyceae), Chondrus Crispus (Rodophyceae) and Ulva lactuca (Chlorophyceae) in outdoor culture systems. J Photochem Photobiol B 57(2-3):169–178. https://doi.org/10.1016/S1011-1344(00)00095-6

    Article  Google Scholar 

  • Cardozo KHM, Carvalho VM, Pinto E, Colepicolo P (2006) Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 20(2):253–258. https://doi.org/10.1002/rcm.2305

    Article  Google Scholar 

  • Christaki E, Bonos E, Giannenas L et al (2012) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11

    Article  Google Scholar 

  • Dawes C (1981) Marine Botany. Wiley, New York, 628 pp

    Google Scholar 

  • Derakhshesh B, Yousefzadi M, Afsharnasab M, Yeganeh V, Dashtuiannasab A (2011) In vitro antibacterial activities of the marine macroalgae (Laurencia snvderiae) and (Sargassum angustifolium) against human pathogens (Persian). Iran South Med J 14(1):17–22

    Google Scholar 

  • Dere S, Dalkiran N, Karacaoglu D et al (2003) The determination of total protein, total soluble carbohydrate and pigment contents of soms macroalgae collected from Gemlik-Karacaali (Bursa) and Erdek-Ormanli (Balikesir) in the sea of Marmara, Turkey. Oceanologia 43(3):453–471

    Google Scholar 

  • Dring MJ (1990). Light harvesting and pigment composition in marine phytoplankton and macroalgae. In: P.J. Hrrring, A.K. Campbell, M. Whitfield and L. Maddock (eds) Light and life in the sea, Camb. Univ. Press, pp.89–103

  • Evans LV (1988) The effects of spectral composition and irradiance level on pigment levels in seaweed. In: Lobban CS, Chapman DJ, Kremer BP (eds) In: Experimental phycology: A Laboratory Manual. Cambridge University Press, Cambridge, pp 123–134

    Google Scholar 

  • Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264(1):1–4

    Google Scholar 

  • Gómez I, Lopez-Figueroa F, Ulloa N et al (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116. https://doi.org/10.3354/meps270103

    Article  Google Scholar 

  • Gómez I, Lopez-Figueroa F, Huovinen P et al (2005) Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture 244(1-4):369–382. https://doi.org/10.1016/j.aquaculture.2004.11.037

    Article  Google Scholar 

  • Guaratini T, Cardozo KHM, Pinto E et al (2009) Comparison of diode array and electrochemical detection in the C30 reverse phase HPLC analysis of algae carotenoids. J Braz Chem Soc 9:1609–1616

    Article  Google Scholar 

  • Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010:1–12. https://doi.org/10.1155/2010/391632

    Article  Google Scholar 

  • Humphrey AM (1980) Chlorophyll. Food Chem 5(1):57–67. https://doi.org/10.1016/0308-8146(80)90064-3

    Article  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equation determining chlorophyll a, b, c2. Biochem Physiol Pflanz 167:194–204

    Article  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kawsar MA, Fujii Y, Matsumoto R et al (2011) Protein R-phycoerythrin from marine red alga Amphiroa anceps: extraction, purification and characterization. Phytol Bal 17(3):347–354

    Google Scholar 

  • Lapointe B (1981) The effects of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria foliifera v. agustissima (Giagartinales, Rhoaophyta). J Phycol 17(1):90–95. https://doi.org/10.1111/j.1529-8817.1981.tb00823.x

    Article  Google Scholar 

  • Lapointe BE, Duke CS (1984) Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. J Phycol 20(4):488–495. https://doi.org/10.1111/j.0022-3646.1984.00488.x

    Article  Google Scholar 

  • Levy I, Friedlander M (1990) Strain selection in Gracilaria spp. growth, pigment and carbohydrates characterization of straind of Graciliria conferta and G.verrucosa (Rhodophyta, Gigartinales). Bot Mar 33:339–345

    Article  Google Scholar 

  • Malta M, Rijstenbil JW, Brouwer PEM et al (2003) Vertical heterogeneity in physiological characteristics of Ulva spp. mats. Mar Biol 143(5):1029–1038. https://doi.org/10.1007/s00227-003-1134-4

    Article  Google Scholar 

  • Marin N, Morales F, Lodeiros C et al (1998) Effect of nitrate concentration on growth and pigment synthesis of Dunaliella salina cultivated under low illumination and preadapted to different salinities. J Appl Phycol 10(4):405–411. https://doi.org/10.1023/A:1008017928651

    Article  Google Scholar 

  • Marinho-Soriano E (2012) Effect of depth on growth and pigment contents of the macroalgae Gracilaria bursa-pastoris. Brazil J Pharmacog 22(4):730–735. https://doi.org/10.1590/S0102-695X2012005000059

    Article  Google Scholar 

  • Marinho-Soriano E, Nunes SO, Carneiro MAA, Pereira DC (2009) Nutrients removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy 33(2):327–331. https://doi.org/10.1016/j.biombioe.2008.07.002

    Article  Google Scholar 

  • Marquardt R, Hendrik Schubert H, Varela DA et al (2010) Light acclimation strategies of three commercially important red algal species. Aquaculture 299(1-4):140–148. https://doi.org/10.1016/j.aquaculture.2009.11.004

    Article  Google Scholar 

  • Neori A, Chopin T, Troell M et al (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern aquacualture. Aquaculture 231:362–391

    Article  Google Scholar 

  • Paerl H (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61(2):143–149. https://doi.org/10.1007/BF00396752

    Article  Google Scholar 

  • Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012a) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical application. Mar Drugs 10(12):1920–1935. https://doi.org/10.3390/md10091920

    Article  Google Scholar 

  • Pereira DC, Trigueria TG, Colepicolo P et al (2012b) Seasonal changes in the pigment composition of natural population of Gracilaria domingensis (Gracilariales, Rhodophyta). Rev Bras 22(4):874–880. https://doi.org/10.1590/S0102-695X2012005000075

    Google Scholar 

  • Pinto E, Nieuwerburgh LV, Barros MP et al (2003) Density-dependent patterns of thiamine and pigments in production in Nitzschia microcephala. Phytochemistry 63(2):155–163. https://doi.org/10.1016/S0031-9422(03)00048-7

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedermann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  Google Scholar 

  • Qaranjik MB,  Rohani Ghadikolaei K (2011) Atlas of the algae of the Persian Gulf and Oman Sea coasts. 1st edn. Iran Fish Res Organ pp 170

  • Qaranjik BM, Wynne M, Bangmei X et al (2011) The biomass of the medicinal red algae (Rhodophyta) in the intertidal zone of the Chabahar coasts. Iran Fish Sci Res J 20:103–114

  • Rabiei R, Asadi M, Sohrabipour J (1989) Morphological and anatomical study of Gracilaria salicornia (C. Agardh) Dawson (Gracilariaceae-Rhodophyta) in the Persian Gulf seahores (Qeshm island). Pajouhesh Sazandegi 75:47–53 In Persian

    Google Scholar 

  • Rafiei F, Fatemi MR, Filizadeh Y et al (2006) Environmental factors affecting agar extraction from Gracilaria corticata in the coastal areas of Persian gulf, Bandar-e-Lengeh. Iran Sci Fish J 15(1):81–88

    Google Scholar 

  • Ramus J, Beale SI, Mauzerall D, Howard KL (1976) Changes in photosynthetic pigment concentration in seaweed as a function of water depth. Mar Biol 37(3):223–229. https://doi.org/10.1007/BF00387607

    Article  Google Scholar 

  • Razi Parjikolaei B, Kloster L, Bruhn A et al (2013) Effect of light quality and nitrogen availability on the biomass production and pigment content of Palmaria palmata (Rhodophyta). Chem Eng Trans 32:967–972

    Google Scholar 

  • Redlinger T, Gantt E (1982) A M(r) 95,000 polypeptide porphyridium cruentum phycobilisomes and thylakoids: possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci U S A 79(18):5542–5546. https://doi.org/10.1073/pnas.79.18.5542

    Article  Google Scholar 

  • Rhee C, Briggs WR (1977) Some responses of Chondrus crispus to light. Pigmentation changes in the natural habitat. Physiol Plant 43:35–42

    Google Scholar 

  • Rosenberg G, Ramus J (1982) Ecological growth strategies in the seaweed Gracilaria foliifera (Rhodophyceae): photosynthesis and antenna composition. Mar Ecol Prog Ser 8:233–241. https://doi.org/10.3354/meps008233

    Article  Google Scholar 

  • Rowan KS (1989). Photosynthetic pigments of algae. Camb Univ Press 317, pp. 65–166

  • Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contens, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis kutzing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361(2):83–91. https://doi.org/10.1016/j.jembe.2008.05.001

    Article  Google Scholar 

  • Schubert N, Garcia-Mendoza E (2006) Carotenoid composition of marine red algae. J Phycol 42(6):1208–1216. https://doi.org/10.1111/j.1529-8817.2006.00274.x

    Article  Google Scholar 

  • Sigaud-Kutner TCS, Pinto E, Okamoto OK, Latorre LR, Colepicolo P (2002) Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankton in batch-cultures. Physiol Plant 114(4):566–572. https://doi.org/10.1034/j.1399-3054.2002.1140409.x

    Article  Google Scholar 

  • Tarko T, Duda-Chodak A, Kobus M (2011) Influence of growth medium composition on synthesis of bioactive compounds and antiaoidant properties of selected strains of Arthrospira Cyanobacteria. Czech J Food Sci 30:258–267

    Article  Google Scholar 

  • Tello-Ireland C, Lemus-Mondaca R, Vega-Galvez A et al (2011) Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture, and agar yield of algae Gracilaria chilensis. LWT-Food Sci Technol 44:2112–2118

    Article  Google Scholar 

  • Waaland JR, Waaland SD, Bates G (1974) Chloroplast structure and pigment composition in the red alga Griffithsia pacifica. Regulation by light intensity. J Phycol 24:319–337

    Google Scholar 

  • Xu J, Gao K (2008) Growth, pigments, UV-absorbing compounds and agar yield of the economic red seaweed Gracilaria lemaneiformis (Rhodophyta) grown at different depths in the coastal waters of the South China Sea. J Appl Phycol 20(5):681–686. https://doi.org/10.1007/s10811-007-9247-7

    Article  Google Scholar 

  • Zucchi MR, Necchi O (2001) Effects of temperature, irradiance and photoperiod on growth and pigment content in some freshwater red algae in culture. Phycol Res 49(2):103–114. https://doi.org/10.1111/j.1440-1835.2001.tb00240.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Khalesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidizadegan, M., Khalesi, M.K. & Ajdari, D. Depth-Dependent Pigment Fluctuations in the Agarophyte Gracilaria corticata at Intertidal Waters. Thalassas 34, 247–253 (2018). https://doi.org/10.1007/s41208-017-0058-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-017-0058-6

Keywords

Navigation