Synergistic Action of Silver Nanoparticles Synthesized from Silver Resistant Estuarine Pseudomonas aeruginosa Strain SN5 with Antibiotics against Antibiotic Resistant Bacterial Human Pathogens

  • Milind Mohan Naik
  • Meghanath Shambhu Prabhu
  • Sanika Naik Samant
  • Pranaya Milind Naik
  • Shilpa Shirodkar
Article

Abstract

This study focuses on the extracellular synthesis of silver nanoparticles (AgNPs), carried out using the culture supernatant of silver resistant Pseudomonas aeruginosa strain SN5 isolated from Mandovi estuarine mangrove water sample. AgNPs were characterized using X-Ray diffraction (XRD) analysis which showed high intensity peaks at 28° and 32.5°, characteristic of silver oxide (Ag2O) and confirmed its crystalline nature by referring Joint Committee on Powder Diffraction Standards (JCPDS), File No. 00–076-1393. Transmission electron microscopy (TEM) analysis revealed the nano sized AgNPS particles in the range of 35 nm – 60 nm. AgNPs showed antibacterial activity against both standard cultures of Gram positive and Gram negative bacterial human pathogens. Moreover, the AgNPs also showed antibacterial activity against ampicillin resistant Staphylococccus aureus strain VN3 and ciprofloxacin resistant Vibrio cholera strain VN1 isolated from Mandovi estuary, Goa India, polluted with human feces, domestic and hotel waste. These AgNPs exhibited better antibacterial activity as compared to AgNPs synthesized from plant extract of Honey suckle mistletoe and star anise. Interestringly, synergistic activity was observed when synthesized AgNPs were used in combination with antibiotics ampicillin and ciprofloxacin against ampicillin resistant Staphylococccus aureus strain VN3 and ciprofloxacin resistant Vibrio cholera strain VN1. Thus these AgNPs can be employed in cosmetics and wound dressings as a nanoweapon to control human bacterial pathogens.

Keywords

Estuarine Pseudomonas aeruginosa Silver nanoparticles Pathogens Nanoweapon Synergistic activity 

Supplementary material

41208_2017_23_MOESM1_ESM.docx (18 kb)
Fig. 1(DOCX 17 kb)
41208_2017_23_MOESM2_ESM.docx (41 kb)
Fig. 2(DOCX 40 kb)
41208_2017_23_MOESM3_ESM.docx (148 kb)
Fig. 3(DOCX 147 kb)
41208_2017_23_MOESM4_ESM.docx (20 kb)
Fig. 4(DOCX 19 kb)
41208_2017_23_MOESM5_ESM.docx (1.1 mb)
Fig. 5(DOCX 1109 kb)

References

  1. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28CrossRefGoogle Scholar
  2. Arunkumar M, Narayanan M, Balakumar S, Ramalingam S, Priyadharshni (2013) Antiquorum sensing and antibacterial activity of silver nanoparticles synthesized by mutant Klebsiella pneumoniae MTCC 3354. Asian J Chem 25.17: 9961–9964Google Scholar
  3. Ashley NB, Kathryn S, Tova S, Jiangrui L, Sherine O, Maria S (2012) Nanoparticles functionalized with ampicillin destroy multiple- antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 78:2768–2774Google Scholar
  4. Chari SJ, Naik MN (2015) Green synthesis of silver nanoparticles from the spice star Anise (Illicium verum) and evaluation of its antimicrobial activity. Goa University, DissertationGoogle Scholar
  5. Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater nanotechnol 2(15):1–7Google Scholar
  6. Dibrov P, Dzoiba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of ag(+) in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2770CrossRefGoogle Scholar
  7. Enchimani A, Naik M (2015) Biogenic synthesis of silver nanoparticles using mango (Mangifera indica) parasitic plant Honey suckle mistletoe (Loranthus falcutus) and evaluation of it’s antimicrobial activity. Goa University, DissertationGoogle Scholar
  8. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6:103–109CrossRefGoogle Scholar
  9. Franci G, Falanga A, Galdiero S, Palomba L, Rai V, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874CrossRefGoogle Scholar
  10. Hamouda T, Myc A, Donovan B, Shih A, Reuter JD, Baker RJ (2000) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial against bacteria, enveloped viruses and fungi. Microbial Res 156:1–10CrossRefGoogle Scholar
  11. Huijing B, Xiaoxu Y, Chen X, Xue L, Zhaoyang L, Dianjun W, Yunde L (2015) New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 10(3):0122535Google Scholar
  12. Hwang I, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726CrossRefGoogle Scholar
  13. Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN (2009) Synthesis and surface chemistry of nano silver particles. Polyhedron 28:2522–2530CrossRefGoogle Scholar
  14. Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing 2:47CrossRefGoogle Scholar
  15. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  16. Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:20CrossRefGoogle Scholar
  17. Kumar CSR, Joseph MM, Kumar TRG, Renjith KR, Manju MN, Chandramohanakumar N (2010) Spatial variability and contamination of heavy metals in the inter-tidal systems of a tropical environment. Int J Environ Res Publ Health 4(4):691–700Google Scholar
  18. Kunkalekar R, Prabhu M, Naik M, Salker A (2014) Silver-doped manganese dioxide and trioxide nanoparticles inhibit both Gram positive and Gram negative pathogenic bacteria. Colloids Surf B 113:429–434CrossRefGoogle Scholar
  19. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011a) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141CrossRefGoogle Scholar
  20. Li X, Xu H, Chen Z, Chen G (2011b) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. doi:10.1155/2011/270974 Google Scholar
  21. Mageswari A, Subramanian P, Ravindran V, Yesodharan S, Bagavan A, Rahuman AA, Karthikeyan S, Gothandam KM (2015) Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ Sci Pollut Res 22:5383–5394CrossRefGoogle Scholar
  22. Martınez-Castanon NGA, Nino-Martınez F, Martınez-Gutierrez JR, Martınez-Mendoza RF (2009) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRefGoogle Scholar
  23. Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414CrossRefGoogle Scholar
  24. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146CrossRefGoogle Scholar
  25. Nikolaos P, Louise EH (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233Google Scholar
  26. Odonkor ST, Addo KK (2011) Bacteria resistance to antibiotics: recent trends and challenges. Int J Biol Med Res 2(4):1204–1210Google Scholar
  27. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  28. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefGoogle Scholar
  29. Prabhu M, Mutnuri S, Kumar S, Naik M (2014) One-pot rapid synthesis of face-centered cubic silver nanoparticles using fermented cow urine: a nanoweapon against fungal and bacterial pathogens. J Bionanoscience 8:1–9CrossRefGoogle Scholar
  30. Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749CrossRefGoogle Scholar
  31. Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s Manual of systematic Bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  32. Sukumaran P, Eldho KP (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32CrossRefGoogle Scholar
  33. Vast KS, Naik MM (2016) Antibacterial activity of novel synthetic thiazolidine derivatives against multidrug resistant pathogenic bacteria from Mandovi estuary and standard ATCC bacterial cultures. Goa University, DissertationGoogle Scholar
  34. Woo KJ, Hye C, Ki K, Sook S, So K, Yong P (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Microbiol Biotechnol 74(7):2171–2178Google Scholar
  35. Xu H, Qu F, Xu H, Lai W, Wang YA, Aguailar ZP, Wei H (2011) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25(1):45–53CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Milind Mohan Naik
    • 1
  • Meghanath Shambhu Prabhu
    • 1
  • Sanika Naik Samant
    • 1
  • Pranaya Milind Naik
    • 2
  • Shilpa Shirodkar
    • 1
  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia
  2. 2.Department of ChemistryDnyanprassarak Mandal’s College and Research CentreMapusaIndia

Personalised recommendations