Ecology of Coralline Red Algae and Their Fossil Evidences from India

Article

Abstract

Coralline red algae are important components of numerous tropical and temperate carbonate systems throughout the world. The environmental factors such as light, water depth, temperature and ocean chemistry have been acknowledged by researchers worldwide to have an impact on the recruitment and diversity of shallow-water coralline algae in marine benthic environments. The potential of coralline red algae as marine climate archives has also been highlighted in many recent studies. A brief overview of the fossil coralline red algae from various sedimentary basins of India is presented herein as well as their palaeoecological applications. The shortcomings and future prospects of coralline algal studies in India pertinent to significant aspects such as palaeoecology, palaeoenvironmental reconstructions, climate dynamics and extinction episodes are also discussed succinctly.

Keywords

Coralline algae Palaeoecology Environment Sedimentary basins India 

References

  1. Adey WH (1979) Crustose coralline algae as microenvironmental indicators in the Tertiary. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics and the changing environment. Oregon University Press, Corvallis, pp 459–464Google Scholar
  2. Adey WH (1986) Coralline algae as indicators of sea-level. In: van de Plassche O (ed) Sea-level research: a manual for the collection and evaluation of data. Geo Books, Norwich, pp 229–280CrossRefGoogle Scholar
  3. Adey WH, Adey PJ (1973) Studies of the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Brit Phycol J 8:343–407CrossRefGoogle Scholar
  4. Adey WH, Mckibbin DL (1970) Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnion corallioides Crouan in the Ria de Vigo. Bot Mar 13:100–106CrossRefGoogle Scholar
  5. Adey WH, Steneck RS (2001) Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698CrossRefGoogle Scholar
  6. Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Cont Mar Sci 15:1–74CrossRefGoogle Scholar
  7. Aguirre J, Riding R, Braga JC (2000a) Diversity of coralline red algae: origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiology 26:651–667CrossRefGoogle Scholar
  8. Aguirre J, Riding R, Braga JC (2000b) Late Cretaceous incident light reduction: evidence from benthic algae. Lethaia 33:205–213CrossRefGoogle Scholar
  9. Aguirre J, Baceta JI, Braga JC (2007) Recovery of primary producers after the Cretaceous-Tertiary mass extinction: Paleocene calcareous red algae from the Iberian Peninsula. Palaeogeog Palaeoclimatol Palaeoecol 249:393–411CrossRefGoogle Scholar
  10. Aguirre J, Perfectti F, Braga JC (2010) Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta). Paleobiology 36:519–533CrossRefGoogle Scholar
  11. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean carbonate ecosystems in the high CO2 world of the Anthropocene. Amer J Sci 305:875–918CrossRefGoogle Scholar
  12. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS USA 105:17442–17446CrossRefGoogle Scholar
  13. Badve RM, Kundal P (1986) Marine Cretaceous algae from the Baratang Formation, Andaman, India. Bull Geol Min Metal Soc India 54:149–158Google Scholar
  14. Badve RM, Kundal P (1988) Distichoplax Pia from Baratang Island, Andaman, India. Biovigyanam 14:95–102Google Scholar
  15. Bassi D (1998) Coralline algal facies and their palaeoenvironments in the Late Eocene of northern Italy (Calcare di Nago, Trento). Facies 39:179–202CrossRefGoogle Scholar
  16. Bassi D (2005) Larger foraminiferal and coralline algal facies in an Upper Eocene storm influenced, shallow-water carbonate platform (Colli Berici, north-eastern Italy). Palaeogeog Palaeoclimatol Palaeoecol 226:17–35CrossRefGoogle Scholar
  17. Bassi D, Woelkerling WJ, Nebelsick JH (2000) Taxonomic and biostratigraphical re-assessments of Subterraniphyllum Elliott (Corallinales, Rhodophyta). Palaeontology 43:405–425CrossRefGoogle Scholar
  18. Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeog Palaeoclimatol Palaeoecol 137:173–187CrossRefGoogle Scholar
  19. Basso D (2012) Carbonate production by calcareous red algae and global change. Geodiversitas 34:13–33CrossRefGoogle Scholar
  20. Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42:606–612CrossRefGoogle Scholar
  21. Bosence DWJ (1983) The occurrence and ecology of recent rhodoliths – a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  22. Bosence DWJ (1984) Construction and preservation of two Recent coralline algal reefs, St. Croix, Caribbean. Palaeontology 27:549–574Google Scholar
  23. Bosence DWJ (1991) Coralline algae: mineralization, taxonomy and paleoecology. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 98–113CrossRefGoogle Scholar
  24. Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in Southern Spain. Palaeogeog Palaeoclimatol Palaeoecol 175:27–41CrossRefGoogle Scholar
  25. Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. Coral Reefs 23:547–558Google Scholar
  26. Braga JC, Davies PJ (1993) Coralline algal distribution in One Tree Reef (Southern Great Barrier Reef, NE Australia). In: International Society for Reef Studies: 1st European Regional Meet, Vienna, Abstract 9Google Scholar
  27. Braga JC, Martín JM (1988) Neogene coralline-algal growth forms and their palaeoenvironments in the Almanzora River Valley (Almeria, S.E. Spain). Palaeogeog Palaeoclimatol Palaeoecol 67:285–303CrossRefGoogle Scholar
  28. Braga JC, Vescogni A, Bosellini FR, Aguirre J (2009) Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeog Palaeoclimatol Palaeoecol 275:113–128CrossRefGoogle Scholar
  29. Burdett HL, Kamenos NA, Law A (2011) Using coralline algae to understand historic marine cloud cover. Palaeogeog Palaeoclimatol Palaeoecol 302:65–70CrossRefGoogle Scholar
  30. Burdett HL, Aloisio E, Calosi P, Findlay HS, Widdicombe S, Hatton A, Kamenos NA (2012) The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae. Mar Biol Res 8:756–763CrossRefGoogle Scholar
  31. Burdett HL, Hatton AD, Kamenos NA (2015) Effects of reduced salinity on the photosynthetic characteristics and intracellular DMSP concentrations of the red coralline alga, Lithothamnion glaciale. Mar Biol 162:1077–1085CrossRefGoogle Scholar
  32. Cabioch GM, Montaggioni LF, Faure G, Ribaud-Leurenti A (1999) Reef coral-algal assemblages as recorders of paleobathymetry and sea level changes in the Indo-Pacific province. Quat Sci Rev 18:1681–1695CrossRefGoogle Scholar
  33. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C09S04):1–12Google Scholar
  34. Camoin G, Cabioch G, Eisenhauer A, Braga JC, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sed Geol 185:277–295CrossRefGoogle Scholar
  35. Canals M, Ballesteros E (1997) Production of carbonate benthic particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep Sea Res II 44:611–629CrossRefGoogle Scholar
  36. Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sed Geol 60:333–346CrossRefGoogle Scholar
  37. Carannante G, Cherchi A, Simone L (1995) Chlorozoan versus foramol lithofacies in Upper Cretaceous rudist limestones. Palaeogeog Palaeoclimatol Palaeoecol 119:137–154CrossRefGoogle Scholar
  38. Chamberlain YM (1996) Lithophylloid Corallinaceae (Rhodophyta) of the genera Lithophyllum and Titanoderma from southern Africa. Phycologia 35:204–221CrossRefGoogle Scholar
  39. Chandra A, Saxena RK, Ghosh AK (1999) Coralline algae from the Kakana Formation (Middle Pliocene) of Car Nicobar Island, India and their implications in biostratigraphy, palaeoenvironment and palaeobathymetry. Curr Sci 76:1498–1502Google Scholar
  40. Chatterji AK, Gururaja MN (1972) Coralline algae from Andaman Islands, India. Rec Geol Surv India 99:133–144Google Scholar
  41. Dethier MN (1994) The ecology of intertidal algal crusts: variation within a functional group. J Exp Mar Biol Ecol 177:37–71CrossRefGoogle Scholar
  42. Dethier MN, Steneck RS (2001) Growth and persistence of diverse intertidal crusts: survival of the slow in a fast-paced world. Mar Ecol Prog Ser 223:89–100CrossRefGoogle Scholar
  43. Di Geronimo R, Alongi G, Giaccone G (1993) Formazione organogene a Lithophyllum lichenoides Philippi (Rhodophyta, Corallinales) nel Mesolitorale di Capo S. Alessio (Sicilia orientale). Boll Accad Gioenia Sci Nat 26:145–172Google Scholar
  44. Durge MV (1965) Archaeolithothamnium from the Bagh Beds of Madhya Pradesh. J Geol Soc Saugar 1:34–37Google Scholar
  45. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  46. Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984CrossRefGoogle Scholar
  47. Gee ER (1927) The geology of the Andaman and Nicobar Islands with special reference to Middle Andaman. Rec Geol Surv India 59:208–232Google Scholar
  48. Gherardi DFM, Bosence DWJ (2005) Late Holocene reef growth and relative sea-level changes in Atol das Rocas, equatorial South Atlantic. Coral Reefs 24:264–272CrossRefGoogle Scholar
  49. Ghosh AK, Sarkar S (2013a) Diversification of the Family Sporolithaceae: a case of successful survival in the perspective of Cretaceous-Tertiary mass extinctions in India. Nat Acad Sci Lett 36:215–224CrossRefGoogle Scholar
  50. Ghosh AK, Sarkar S (2013b) Palaeoecological implications of corallinacean red algae and halimedacean green algae from the Prang Formation of South Shillong Plateau, Meghalaya. J Geol Soc India 81:531–542CrossRefGoogle Scholar
  51. Ghosh AK, Sarkar S (2013c) Facies analysis and paleoenvironmental interpretation of Piacenzian carbonate deposits from the Guitar Formation of Car Nicobar Island, India. Geosci Front 4:755–764CrossRefGoogle Scholar
  52. Ghosh AK, Chandra A, Saxena RK (2004) Middle Pliocene non-geniculate and geniculate coralline algae from the Car Nicobar Island, India. In: Srivastava PC (ed) Vistas in palaeobotany and plant morphology: evolutionary and environmental perspectives. Prof. D.D. Pant Memorial Volume, pp 249–62Google Scholar
  53. Guenther RJ, Martone PT (2014) Physiological performance of intertidal coralline algae during a simulated tidal cycle. J Phycol 50:310–321CrossRefGoogle Scholar
  54. Halfar J, Mutti M (2005) Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology 33:481–484CrossRefGoogle Scholar
  55. Halfar J, Zack T, Kronz A, Zachos JC (2000) Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. J Geophys Res 105:22107–22116CrossRefGoogle Scholar
  56. Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguín JE, Borges JM (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32:213–216CrossRefGoogle Scholar
  57. Halfar J, Steneck RS, Joachimski M, Kronz A, Wanamaker AD (2008) Coralline red algae as high-resolution climate recorders. Geology 36:463–466CrossRefGoogle Scholar
  58. Halfar J, Hetzinger S, Adey W, Zack T, Gamboa G, Kunz B, Williams B, Jacob DE (2010) Coralline algal growth-increment widths archive North Atlantic climate variability. Palaeogeog Palaeoclimatol Palaeoecol 302:71–80CrossRefGoogle Scholar
  59. Halfar J, Williams B, Hetzinger S, Steneck RS, Lebednik P, Winsborough C, Omar A, Chan P, Wanamaker A (2011) 225 Years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths. Geology 39:579–582CrossRefGoogle Scholar
  60. Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platform. Palaios 1:389–398CrossRefGoogle Scholar
  61. Hallock P, Hine AC, Vargo GA, Elrod JA, Jaap WC (1988) Platforms of the Nicaraguan Rise: examples of the sensitivity of carbonate sedimentation to excess trophic resources. Geology 16:1104–1107CrossRefGoogle Scholar
  62. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia M (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  63. Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cien Mar 33:411–426Google Scholar
  64. Humane SK, Kundal P (2010) Nongeniculate coralline algae from Middle Eocene to late Lower Miocene of southwestern part of Kachchh, India. ONGC Bulletin 45:30–45Google Scholar
  65. Iryu Y, Nakamori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its ecological significance in the modern reef complex of the Ryukyu Islands. Sed Geol 99:243–258CrossRefGoogle Scholar
  66. Jauhri AK, Agarwal KK (2001) Early Palaeogene in the south Shillong Plateau, NE India: local biostratigraphic signals of global tectonic and ocean changes. Palaeogeog Palaeoclimatol Palaeoecol 168:187–203CrossRefGoogle Scholar
  67. Jauhri AK, Misra PK, Kishore S, Singh SK (2006) Larger foraminiferal and calcareous algal facies in the Lakadong Formation of the South Shillong Plateau, NE India. J Palaeontol Soc India 51:51–61Google Scholar
  68. Jessen C, Roder C, Villa Lizcano JF, Voolstra CR, Wild C (2013) In-Situ effects of simulated overfishing and eutrophication on benthic coral reef algae growth, succession and composition in the Central Red Sea. PLoS ONE 8:e66992CrossRefGoogle Scholar
  69. Johansen HW (1981) Coralline algae, a first synthesis. CRC, Boca Baton, 239 ppGoogle Scholar
  70. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483CrossRefGoogle Scholar
  71. Kalita KD, Gogoi H (2015) Microfacies types (MFT) and palaeoenvironment of the Umlatdoh carbonates in the Shillong Plateau of Meghalaya, NE India. J Geol Soc India 85:686–696CrossRefGoogle Scholar
  72. Kamenos NA (2010) North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci U S A 107:22442–22447CrossRefGoogle Scholar
  73. Kamenos NA, Law A (2010) Temperature controls on coralline algal skeletal growth. J Phycol 46:331–335CrossRefGoogle Scholar
  74. Kamenos NA, Moore PG, Hall-Spencer JM (2004) Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar Ecol Prog Ser 274:183–189CrossRefGoogle Scholar
  75. Kamenos NA, Burdett HL, Alioso E, Findlay HS, Martin S, Longbone C, Dunn J, Widdicombe S, Calosi P (2013) Coralline algal structure is more sensitive to rate, rather than magnitude, of ocean acidification. Glob Change Biol 19:3621–3628CrossRefGoogle Scholar
  76. Keats DW, Maneveldt G, Chamberlain YM (2000) Lithothamnion superpositum Foslie: a common crustose red alga (Corallinaceae) in South Africa. Crypt Algol 21:381–400CrossRefGoogle Scholar
  77. King RJ, Schramm W (1982) Calcification in the maerl coralline alga Phymatolithon calcareum, effects of salinity and temperature. Mar Biol 70:197–204CrossRefGoogle Scholar
  78. Kishore S, Singh SK, Misra PK, Jauhri AK (2012) Species of Amphiroa Lamourox (Corallinaceae, Rhodophyta) from the Chaya Formation (Quaternary) of the Dwarka Area, Gujarat and their significance. J Palaeontol Soc India 57:153–158Google Scholar
  79. Kishore S, Jauhri AK, Singh SK, Malakar B, Misra PK (2015) Coralline algae from the Neill West Coast Formation (Pleistocene), Neil Island, South Andaman, India. J Palaeontol Soc India 60:57–69Google Scholar
  80. Kremer BP (1981) Aspects of carbon metabolism in marine microalgae. Oceanogr Mar Biol: An Ann Rev 19:41–95Google Scholar
  81. Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409CrossRefGoogle Scholar
  82. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  83. Kundal P (2011) Generic distinguishing characteristics and stratigraphic ranges of fossil corallines: an update. J Geol Soc India 78:571–586CrossRefGoogle Scholar
  84. Kundal P (2014) Miocene calcareous algae from India: retrospect and prospect. Spec Publ Palaeontol Soc India 5:135–143Google Scholar
  85. Kundal P, Dharashivkar AP (2005) Record of rhodoliths from Aramda Reef Member (Late Pleistocene to Holocene) of Chaya Formation, Dwarka-Okha area, Gujarat and their paleonevironmental significance. Curr Sci 88:1684–1689Google Scholar
  86. Kundal P, Dharashivkar AP (2006) Ichnofossils from Neogene and Quaternary deposits of Dwarka Okha area, Jamnagar District, Gujarat, India. J Geol Soc India 68:299–315Google Scholar
  87. Kundal P, Humane SK (2006) Record of Metagoniolithon (Corallinales, Rhodophyta) from the Burdigalian of western India. Curr Sci 91:221–224Google Scholar
  88. Kundal MP, Humane SK (2012) Geniculate coralline algae from the Early Miocene Godhra Formation of the Kachchh offshore basin, western India. J Palaeontol Soc India 57:143–151Google Scholar
  89. Kundal P, Mude SN (2009a) Nongeniculate coralline algae from the Early Miocene to Late Holocene sequence of the Porbandar area, Saurashtra, Gujarat, India. J Palaeontol Soc India 54:73–80Google Scholar
  90. Kundal P, Mude SN (2009b) Geniculate coralline algae from the Neogene-Quaternary sediments in and around Porbandar area, Saurashtra, Gujarat, India. J Geol Soc India 74:267–274CrossRefGoogle Scholar
  91. Kundal P, Sanganwar BN (1998) Stratigraphical, Palaeogeographical and Palaeoenvironmental significance of fossil calcareous algae from Nimar Sandstone Formation, Bagh-Group (Cenomanian-Turonian) of Pipaldehla, Jhabua Dt, MP. Curr Sci 75:702–708Google Scholar
  92. Kundal P, Wanjarwadkar KM (2000) Jania Lamouroux from Late Paleocene limestone of Middle Andaman, India. ONGC Bulletin 37:227–237Google Scholar
  93. Kundal P, Bhagat MB, Humane SK (2007) Paleoenvironmental significance of coralline algae from Early Miocene Bombay Formation, Bombay Offshore Basin. J Geol Soc India 69:274–278Google Scholar
  94. Kundal P, Humane SS, Humane SK (2011) Calcareous algae from the Miliolite Formation (Middle Pleistocene) of Diu, Saurashtra. J Palaeontol Soc India 56:181–194Google Scholar
  95. Kundal P, Bhagat MB, Kundal MP (2013) Coralline algae from the Bassein Formation (Middle to Late Eocene) of Mumbai Offshore Basin and its paleoenvironmental significance. ONGC Bulletin 48:15–34Google Scholar
  96. Kundal P, Kundal MP, Mude SN (2014) Neogene-Quaternary calcareous algae from Saurashtra Basin, western India: implications on paleoenvironments and hydrocarbon exploration. J Geol Soc India 83:183–190CrossRefGoogle Scholar
  97. Laborel J (1986) Vermetid gastropods as sea-level indicators. In: van de Plassche O (ed) Sea-level research: a manual for the collection and evaluation of data. Geo Books, Norwich, pp 281–310CrossRefGoogle Scholar
  98. Lund MJ, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, eastern Australia. Facies 42:25–34CrossRefGoogle Scholar
  99. Macintyre IG, Glynn PW, Steneck RS (2001) A classic Caribbean algal ridge, Holandés Cays, Panamá: an algal coated storm deposit. Coral Reefs 20:95–105CrossRefGoogle Scholar
  100. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100CrossRefGoogle Scholar
  101. Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso JP (2013) One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol 3:676–693CrossRefGoogle Scholar
  102. Martone PT (2010) Quantifying growth and calcium carbonate deposition of Calliarthron cheilosporioides (Corallinales, Rhodophyta) in the field using a persistent vital stain. J Phycol 46:13–17CrossRefGoogle Scholar
  103. Matsumaru K, Sarma A (2010) Larger foraminiferal biostratigraphy of the lower Tertiary of Jaintia Hills, Meghalaya, NE India. Micropaleontology 56:539–565Google Scholar
  104. McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological and geochemical responses to global change. J Phycol 51:6–24CrossRefGoogle Scholar
  105. Milliman JD (1974) Marine carbonates. Springer, New YorkGoogle Scholar
  106. Misra PK, Kumar P (1988) Fossil algae from the Cretaceous of Varagur, Tiruchirapalli district, Tamil Nadu. Palaeobotanist 37:36–51Google Scholar
  107. Misra PK, Jauhri AK, Singh SK, Kishore S (2006a) Coralline algae from Fulra Limestone (Middle Eocene) of Kachchh, Gujarat, western India. J Geol Soc India 67:495–502Google Scholar
  108. Misra PK, Jauhri AK, Singh SK, Kishore S, Rajanikanth A (2006b) Non-geniculate coralline algae from the Uttatur Group (early Cretaceous), South India. Palaeobotanist 55:29–40Google Scholar
  109. Misra PK, Kishore S, Singh SK, Jauhri AK (2009) Rhodophycean algae from the lower Cretaceous of the Cauvery Basin, South India. J Geol Soc India 73:325–334CrossRefGoogle Scholar
  110. Misra PK, Jauhri AK, Tiwari RP, Kishore S, Singh AP, Singh SK (2011) Coralline algae from the Prang Formation (middle-late Eocene) of the Lumshnong area, Jaintia Hills, Meghalaya. J Geol Soc India 78:355–364CrossRefGoogle Scholar
  111. Misra U, Kishore S, Singh SK, Misra PK, Jauhri AK (2016) New record of coralline algae from the Holocene sediments of Agatti Island, Lakshadweep, India. J Geol Soc India 87:308–316CrossRefGoogle Scholar
  112. Montaggioni LF, Camoin GF (1993) Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology 21:149–152CrossRefGoogle Scholar
  113. Montaggioni LF, Cabioch G, Camoin GF, Bard E, Ribaud-Laurenti A, Faure G, Déjardin P, Récy J (1997) Continuous record of reef growth over the past 14 k.y. on the mid-Pacific island of Tahiti. Geology 25:555–558CrossRefGoogle Scholar
  114. Mude SN, Kundal P (2012) Additional coralline algae from the Lower Miocene to Late Holocene sediments of the Porbandar Group, Gujarat. J Geol Soc India 79:69–76CrossRefGoogle Scholar
  115. Nebelsick JH, Bassi D, Lempp J (2013) Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148CrossRefGoogle Scholar
  116. Pandey DK, Bahadur T, Mathur UB (2007) Stratigraphic distribution and depositional environment of the Chaya Formation along the Northwestern coast of Saurasthra peninsula, Western India. J Geol Soc India 69:1215–1230Google Scholar
  117. Payri CE, Cabioch G (2004) The systematics and significance of coralline red algae in the rhodolith sequence of the Amédée 4 drill core (Southwest New Caledonia). Palaeogeog Palaeoclimatol Palaeoecol 204:187–208CrossRefGoogle Scholar
  118. Perrin C, Bosence D, Rosen B (1995) Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils. Geol Soc London Spec Publ 83:181–229Google Scholar
  119. Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106–144CrossRefGoogle Scholar
  120. Piller WE, Rasser M (1996) Rhodolith formation induced by reef erosion in the Red Sea, Egypt. Coral Reefs 15:191–198CrossRefGoogle Scholar
  121. Pomar L, Ward WC (1999) Reservoir-scale heterogeneity in depositional packages and diagenetic patterns on a reef-rimmed platform, Upper Miocene, Mallorca, Spain. Bull AAPG 83:1759–1773Google Scholar
  122. Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651CrossRefGoogle Scholar
  123. Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166CrossRefGoogle Scholar
  124. Ragazzola F, Foster LC, Form A, Anderson PSL, Hansteen TH, Fietzke J (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Change Biol 18:2804–2812CrossRefGoogle Scholar
  125. Rasser M, Piller WE (1997) Depth distribution of calcareous encrusting associations in the northern Red Sea (Safarga, Egypt) and their geological implications. Proc 8th Int Coral Reef Symp 1:743–748Google Scholar
  126. Reuter M, Piller WE, Harzhauser M, Kroh A, Rögl F, Ćorić S (2011) The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds. Lethaia 44:76–86CrossRefGoogle Scholar
  127. Ringeltaube P, Harvey A (2000) Non-geniculate coralline algae (Corallinales, Rhodophyta) on Heron Reef, Great Barrier Reef (Australia). Bot Mar 43:431–454CrossRefGoogle Scholar
  128. Sarkar S (2015a) Thanetian-Ilerdian coralline algae and benthic foraminifera from northeast India: microfacies analysis and new insights into the Tethyan perspective. Lethaia 48:13–28CrossRefGoogle Scholar
  129. Sarkar S (2015b) Calcareous algal-rich carbonate sediments from Assam Shelf, N-E India: an overview of the palaeoenvironmental implications. In: Mukherjee S (ed) Petroleum geosciences: Indian contexts. Springer Geology, Switzerland, pp 175–189CrossRefGoogle Scholar
  130. Sarkar S (2015c) Upper Pliocene heterozoan assemblage from the Guitar Formation of Car Nicobar Island, India: palaeoecological implications and taphonomic signatures. Palaeobiodiv Palaeoenv 96:221–237CrossRefGoogle Scholar
  131. Sarkar S, Ghosh AK (2015) Evaluation of coralline algal diversity from the Serravallian carbonate sediments of Little Andaman Island (Hut Bay), India. Carbonate Evaporite 30:13–24CrossRefGoogle Scholar
  132. Sarkar S, Sarkar S (2015) Diversity of corals and benthic algae across the shallow-water reefs of Andaman Islands: managing the valuable ecosystems. Env Dev Sust. doi:10.1007/s10668-015-9709-z Google Scholar
  133. Sarkar S, Ghosh AK, Rao GMN (2016) Coralline algae and benthic foraminifera from the Long Formation (middle Miocene) of the Little Andaman Island, India: biofacies analysis, systematic and palaeoenvironmental implications. J Geol Soc India 87:69–84CrossRefGoogle Scholar
  134. Sarma A, Ghosh AK, Sarkar S (2014) First record of coralline red algae from the Kopili Formation (late Eocene) of Meghalaya, N-E India. Nat Acad Sci Lett 37:503–507CrossRefGoogle Scholar
  135. Savini A, Basso D, Bracchi VA, Corselli C, Pennetta M (2012) Maerl-bed mapping and carbonate quantification on submerged terraces offshore the Cilento peninsula (Tyrrhenian Sea). Geodiversitas 34:77–98CrossRefGoogle Scholar
  136. Saxena RK, Ghosh AK, Chandra A (2005) Calcareous algae from the limestone unit of Hut Bay Formation (Late Middle Miocene) of Little Andaman Island, India. In: Keshri JP, Kargupta AN (eds) Glimpses of Indian phycology. Bishen Singh Mahendra Pal Singh Press, Dehradun, pp 275–301Google Scholar
  137. Sharma V, Srinivasan MS (2007) Geology of Andaman-Nicobar: the neogene. Capital Publishing Company, New Delhi, 162 ppGoogle Scholar
  138. Singh SK, Kishore S, Singh AP, Misra PK, Jauhri AK (2009) Coralline algae from the Maniyara Fort Formation (Lower Oligocene) of Kachchh, Gujarat, India. Rev de Paleobiol 28:19–32Google Scholar
  139. Singh SK, Kishore S, Jauhri AK, Misra PK (2011) Coralline algae from the Bermoti Member (Upper Oligocene) of the Maniyara Fort Formation of Kachchh, Gujarat, India. Rev de Paleobiol 30:177–190Google Scholar
  140. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeog Palaeoclimatol Palaeoecol 144:3–19CrossRefGoogle Scholar
  141. Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Ann Rev Ecol Evol Syst 17:273–303CrossRefGoogle Scholar
  142. Steneck RS, Adey WH (1976) The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Bot Mar 59:197–215Google Scholar
  143. Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498CrossRefGoogle Scholar
  144. Tewari VC, Kumar K, Lokho K, Siddaiah NS (2010a) Lakadong limestone: Paleocene-Eocene boundary carbonate sedimentation in Meghalaya, northeastern India. Curr Sci 98:88–95Google Scholar
  145. Tewari VC, Lokho K, Kumar K, Siddaiah NS (2010b) Late Cretaceous-Paleogene basin architecture and evolution of the Shillong Shelf sedimentation, Meghalaya, Northeast India. J Ind Geol Cong 2:61–73Google Scholar
  146. Tierney PW, Johnson ME (2012) Stabilization role of crustose coralline algae during Late Pleistocene reef development on Isla Cerralvo, Baja California Sur (Mexico). J Coastal Res 279:244–254CrossRefGoogle Scholar
  147. Toth LT, Aronson RB, Vollmer SB, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, Van Woesik R, Macintyre IG (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84CrossRefGoogle Scholar
  148. Vásquez-Elizondo RM, Enriquez S (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6. doi:10.1038/srep19030
  149. Venkatachalapathy V, Gururaja MN (1984) Algal genus Aetesolithon from Neogene of Little Andaman Island. J Geol Soc India 25:63–66Google Scholar
  150. Verheij E, Erftemeijer PLA (1993) Distribution of seagrasses and associated macroalgae in South Sulawesi, Indonesia. Blumea 38:45–64Google Scholar
  151. Williams B, Halfar J, Steneck RS, Wortmann UG, Hetzinger S, Adey WH, Lebednik P, Joachimski M (2011) Twentieth century δC13 variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea. Biogeosciences 8:165–174CrossRefGoogle Scholar
  152. Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European maine conservation. Biol Conserv 120:283–293CrossRefGoogle Scholar
  153. Yamano H, Kayanne H, Yonekura N (2001) Anatomy of a modern coral reef flat: a recorder of storms and uplift in the late Holocene. J Sed Res 71:295–304CrossRefGoogle Scholar
  154. Žuljević A, Kaleb S, Peña V, Despalatović M, Cvitković I, De Clerck O, Le Gall L, Falace A, Vita F, Braga JC, Antolić B (2016) First freshwater coralline alga and the role of local features in a major biome transition. Sci Rep 6. doi:10.1038/srep19642

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations