Skip to main content
Log in

Ephemeral signature of anoxia in the southwest Mediterranean coastal lagoon (southeast Tunisia) similar to the sapropel S1

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

On the southeast Tunisian coast, organic-rich facies were formed at the middle Holocene in a confined Boujmel lagoon bottom (currently Sebkha Boujmel) during the last deglaciation. Sedimentological and organic geochemistry are used to analyze samples from respectively eight and three cores. The total organic carbon (TOC) and humic compounds analysis highlighted the setting of anoxia around 6800 years before present (BP) and its breakdown at about 4000 years BP. Biotic and abiotic anoxic proxies constitute waterproofing of a high degree of confinement occurring under water column stratification. The well-preserved organic-rich material of mixed origin (continental and marine) constitutes a biotic proxy and the abiotic ones are made of polyhalite and magnesian minerals that layer just above the euxinic facies close-fitting water column stratification. The TOC peak registered in the euxinic facies of the Sebkha Boujmel correlates with the highest Holocene sea level change during the transgression of the Mediterranean Sea. Such correlation and the time of the anoxic phase launch the relationship between the Mediterranean sapropel S1 and the euxinic facies of Sabkha Boujmel. It seems that anoxia began early around 9000 years BP in the deepest areas of the Mediterranean Sea and progressively reached its edges around 6000–7000 years BP, recording a diachronism in the installation of the organic-rich facies, which agrees with the marine intrusion highlighted in the Sebkha Boujmel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpert NL, Keiser WE, Szymanski HA (1970) Theory and practice of infrared spectroscopy. Plénum Press, New-York

    Google Scholar 

  • Ariztegui D, Asioli A, Lowe JJ, Trincardi F, Vigliotti L, Tamburini F, Oldfield F (2000) Palaeoclimate and the formation of sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeogr, Palaeoclimatol, Palaeoecol. 158(3–4):215–240

    Article  Google Scholar 

  • Bakrač K, Ilijanić N, Miko S, Hasan O (2015) Evidence of sapropel S1 formation from Holocene lacustrine sequences in Northern Dalmatia (Vrana Lake). In: 5. HRVATSKI GEOLOŠKI KONGRES međunarodnim sudjelovanjem/5th CROATIAN GEOLOGICAL CONGRESS with international participation. p 19–20

  • Bellamy LJ (1958) The infrared spectra of complex molecules, 2nd edn. Methuen and Co., Ltd., London

    Google Scholar 

  • Betts JN, Holland HD (1991) The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Paleogeogr, Paleoclimatol Paleoecol 97:493

    Article  Google Scholar 

  • Bouloubassi I, Guehenneux G, Rullkötter J (1998) Biological marker significance of organic matter origin in sapropels from the Mediterranean Ridge, Site 9691. In: Proceedings of the Ocean Drilling Program, Scientific Results Vol. 160. p 261–269

  • Brown JK (1955) The infrared spectra coals. J Chem Soc. https://doi.org/10.1039/jr9550000744

    Article  Google Scholar 

  • Busson G, Perthuisot JP (1977) Intérêt de la Sebkha el Melah (Sud tunisien) pour l’interprétation des séries évaporitiques anciennes. Sediment Geol 2:139–164

    Article  Google Scholar 

  • Castañeda IS, Schefuß E, Pätzold J, Sinninghe Damsté JS, Weldeab S, Schouten S (2010) Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years. Paleoceanography. https://doi.org/10.1029/2009PA001740

    Article  Google Scholar 

  • Cita MD, Vergnaud-Grazzini CC, Robert C, Chamley H, Ciaranfi N, d’Onofrio S (1977) Paleoclimatic record of a long deep sea core from the Eastern Mediterranean. Quat Res 8:205–235

    Article  CAS  Google Scholar 

  • Clarkson MO, Hennekam R, Sweere TC, Andersen MB, Reichart GJ, Vance D (2021) Carbonate associated uranium isotopes as a novel local redox indicator in oxidatively disturbed reducing sediments. Geochim Cosmochim Acta 311:12–28

    Article  CAS  Google Scholar 

  • Demaison GJ, Moore GT (1980) Anoxic environments and oil source bed genesis. AAPG Bull 64:1179–1209

    CAS  Google Scholar 

  • Espitalie J, Durand B, Roussel JC, Souron C (1973) Etude de la matière organique insoluble (kérogène) des argiles du Toarcien du Bassin de Paris II. Etude en spectroscopie infrarouge, en analyse thermique différentielle et en analyse thermogravimétrique. Rev. Inst. Français Pétrole, XXVIII.

  • Filippidi A, De Lange GJ (2019) Eastern Mediterranean deep water formation during sapropel S1: a reconstruction using geochemical records along a bathymetric transect in the Adriatic outflow region. Paleoceanogr Paleoclimatol 34(3):409–429

    Article  Google Scholar 

  • Filippidi A, Triantaphyllou MV, De Lange GJ (2016) Eastern-Mediterranean ventilation variability during sapropel S1 formation, evaluated at two sites influenced by deep-water formation from Adriatic and Aegean Seas. Quatern Sci Rev 144:95–106

    Article  Google Scholar 

  • Fontes JCh, Perthuisot JP (1971) Faciès minéralogiques et isotopiques des carbonates de la Sabkhael Melah (Zarzis, Tunisie): les variations du niveau de la Méditerranée orientale depuis 40.000ans. Revue et de Géographie Physique et de Géologie Dynamique(2). 4:299

    Google Scholar 

  • Grazzini CV, Devaux M, Znaidi J (1986) Stable isotope “anomalies” in Mediterranean Pleistocene records. Mar Micropaleontol 10(1–3):35–69. https://doi.org/10.1016/0377-8398(86)90024-1

    Article  Google Scholar 

  • Hennekam R, Jilbert T, Schnetger B, de Lange GJ (2014) Solar forcing of Nile discharge and sapropel S1 formation in the early to middle Holocene eastern Mediterranean. Paleoceanography 29(5):343–356

    Article  Google Scholar 

  • Huc AY, Durand BM (1977) Occurrence and significance of humic acids in ancient sediments. Fuel 56:73–80

    Article  CAS  Google Scholar 

  • Huc AY, Durand, B, Monin JC (1978) Humic compounds and kerogens in core from Black Sea Sediments Legs 42 B, Sites 379 A, B and 380 A. U.S. Government Printing Office.

  • Lakhdar R (2009) Sédimentologie des dépôts holocènes et des tapis microbiens récents de la de Sebkha Boujmel et de ses environs (Sud-Est de la Tunisie): Faciès et paléoenvironnements Doctorat en sciences géologiques. Université de Sfax, Faculté des sciences de Sfax, p 207p

    Google Scholar 

  • Lakhdar R, Soussi M, Ben Ismail MH, M’Rabet A (2006) A Mediterranean Holocene restricted coastal lagoon under arid climate: case of the sedimentary record of the Sabkha Boujmel (SE Tunisia). Palaeogeogr Palaeoclimatol Palaeoecol 241:177–191

    Article  Google Scholar 

  • Lakhdar R, Talbi R, Soussi M, Jedoui Y, Jaouadi S, Anzidei M (2022) Sedimentary record from Holocene to present-day Southeastern Tunisia: facies, paleoenvironments and climate changes. Arab J Geosci. 15:954. https://doi.org/10.1007/s12517-022-09964-w

    Article  Google Scholar 

  • Lourens LJ, Hilgen FJ, Zachariasse WJ, Van Hoof AAM, Antonarakou A, Vergaud-Grazzini C (1996) Evaluation of the PlioPleistocene astronomical timescale. Paleoceanography 11:391–413

    Article  Google Scholar 

  • Matthews A, Azrieli-Tal I, Benkovitz A, Bar-Matthews M, Vance D, Poulton SW, Archer C (2017) Anoxic development of sapropel S1 in the Nile Fan inferred from redox sensitive proxies, Fe speciation, Fe and Mo isotopes. ChemicalGeology 475:24–39

    CAS  Google Scholar 

  • Meyer KM, Kump LR (2008) Oceanic euxinia in Earth history: causes and consequences. Annu Rev Earth Planet Sci 36:251–288

    Article  CAS  Google Scholar 

  • Nijenhuis IA, Bosch HJ, Damsté JS, Brumsack HJ, De Lange GJ (1999) Organic matter and trace element rich sapropels and black shales: a geochemical comparison. Earth Planet Sci Lett 169(3–4):277–290

    Article  CAS  Google Scholar 

  • Olausson E (1991) A post-Cromerian rise in sea level. In: Weller G, Wilson CL, Severin BAB (Eds), International Conference on the Role of Polar Regions in Global Change: Proceedings of a Conference Held Jun 11–15, 1990 at the University of Alaska Fairbanks vol. II. Geophysical Inst. Univ. of Alaska Fairbanks. p 496–498

  • Paskoff R, Sanlaville P (1983) Les cotes de la Tunisie. Variations du niveau de la mer depuis le Tyrrhénien. Maison de l'Orient Méditerranéen, Lyon University. p 192

  • Pastouret L (1970) Étude sédimentologique et paléoclimatique de carottes prélevées en Méditerranée orientale. Tethys 2(1):227–266

    Google Scholar 

  • Pavlovska M, Prekrasna I, Dykyi E, Zotov A, Dzhulai A, Frolova A, Stoica E (2021) Niche partitioning of bacterial communities along the stratified water column in the Black Sea. Microbiologyopen. 10(3):e1195

    Article  CAS  Google Scholar 

  • Pomar L (2020) Carbonate systems. Regional geology and tectonics. Elsevier, New York, pp 235–311

    Google Scholar 

  • Purser BH (1980) Sédimentation et diagenèse des carbonates néritiques récents. Tome, vol. 1. Editions Technip, Paris. 366 pp. Geo-Eco-Trop, 2007. 31: 171–214

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck AJW, Blackwell PJ, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Herring C, Hughen KA, Kromer B, Mccormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van Der Plicht J, Weyhenmeyer CE (2013) INTACAL04 terrestrial radiocarbon age calibration. Radiocarbon 46:1029–1058

    Google Scholar 

  • Richards FA, Redfield AC (1954) A correlation between the oxygen content of seawater and the organic content of marine sediments. Deep Sea Res. 1:279–281

    CAS  Google Scholar 

  • Robin PL (1978) Rouxhet PG (1978) Characterization of kerogens and study of their evolution by infrared spectroscopy carbonyl and carboxyl groups. Geochim Cosmochim Acta 42(9):1341–1349

    Article  CAS  Google Scholar 

  • Rodríguez-López JP, Liesa CL, Pardo G, Meléndez N, Soria AR, Skilling I (2016) Glacial dropstones in the western Tethys during the late Aptian–early Albian cold snap: palaeoclimate and palaeogeographic implications for the mid-Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 452:11–27. https://doi.org/10.1016/j.palaeo.2016.04.004

    Article  Google Scholar 

  • Rohling EJ, Jorissen FJ, De Stigter HC (1997) 200 year interruption of Holocene sapropel formation in the Adriatic Sea. J Micropalaeontol 16(2):97–108

    Article  Google Scholar 

  • Rossignol-Strick M, Nesteroff W, Olive P, Vergnaud-Grazzini C (1982) After the deluge: Mediterranean stag-nation and sapropel formation. Nature 295:105–110

    Article  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie Mijnbow 55(3–4):179–184

    Google Scholar 

  • Slomp CP, Thomson J, de Lange GJ (2002) Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel (S1). Geochim Cosmochim Acta 66(7):1171–1184

    Article  CAS  Google Scholar 

  • Smith KL (1978) Benthic community respiration in the NW Atlantic Ocean: in situ measurements from 40 to 5299m. Marine Biol. 47:337–347

    Article  CAS  Google Scholar 

  • Sohlenius G, Emeis KC, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the Holocene fresh–brackish water transition in the Baltic Sea. Mar Geol 177(3–4):221–242

    Article  CAS  Google Scholar 

  • Stanford JD, Hemingway R, Rohling EJ, Challenor PG, Medina-Elizalde M, Lester AJ (2011) Sea-level probability for the last deglaciation: a statistical analysis of far-field records. Glob Planet Chang 79:193–203

    Article  Google Scholar 

  • Stanley DJ, Maldonado A (1977) Mud-facies definition for paleoenvironmental interpretation. In: Program and Abstracts, AAPG-SEPM Meeting, June 1977, Washington. pp. 106–107

  • Stevenson FJ, Goh KM (1971) Infrared spectra of humic acids and related substances. Geochim Cosmochim Acta 35:471–483. https://doi.org/10.1016/0016-7037(71)90044-5

    Article  CAS  Google Scholar 

  • Stewart K, Kassakian S, Krynytzky M, DiJulio D, Murray JW (2007) Oxic, suboxic, and anoxic conditions in the Black Sea. The Black Sea flood question: Changes in coastline, climate, and human settlement. p 1–21

  • Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature. 288:260–263

    Article  CAS  Google Scholar 

  • Talbi R, Lakhdar R, Smati A, Spiller R, Levey R (2018) Aptian-Albian shale oil unconventional system as registration of Cretaceous oceanic anoxic sub-events in the southern Tethys (Bir M’Cherga basin, Tunisia). J Pet Explor Prod Technol 9(2):1007–1022. https://doi.org/10.1007/s13202-018-0577-6

    Article  CAS  Google Scholar 

  • Thomson J, Mercone D, De Lange GJ, Van Santvoort PJM (1999) Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence. Mar Geol 153(1–4):77–89

    Article  CAS  Google Scholar 

  • Troelstra SR, Ganssen GM, Der Borg KV, De Jong AFM (1991) A late quaternary stratigraphic framework for eastern mediterranean sapropel is based on ams 14c dates and stable oxygen isotopes. Radiocarbon. 33(1):15–21

    Article  Google Scholar 

  • Van Santvoort PJM, De Lange GJ, Thomson J, Cussen H, Wilson TRS, Krom MD, Ströhle K (1996) Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea. Geochim Cosmochim Acta 60(21):4007–4024

    Article  Google Scholar 

  • Vergnaud-Grazzini C, Ryan WB, Cita MB (1977) Stable isotopic fractionation, climate change and episodic stagnation in the eastern Mediterranean during the late Quaternary. Mar Micropaleontol 2:353–370

    Article  Google Scholar 

  • Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK, Pareschi MT (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quatern Sci Rev 26(3–4):279–286

    Article  Google Scholar 

  • Zirks E, Krom MD, Zhu D, Schmiedl G, Goodman-Tchernov BN (2019) Evidence for the presence of oxygen-depleted sapropel intermediate water across the Eastern Mediterranean during Sapropel S1. ACS Earth and Space Chemistry 3(10):2287–2297

    Article  CAS  Google Scholar 

  • Znaidi-Rivault J (1982) Les grands évènements climatiques du Quaternaire récent en Méditerranée Orientale: La réponse sédimentaire, microfaunique et isotopique (Doctoral dissertation, PhD Thesis, University of Paris).

  • Zonneveld KA, Versteegh GJ, Kasten S, Eglinton TI, Emeis KC, Huguet C, Wakeham SG (2010) Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences. 7(2):483–511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted with the support of the Ministry of Higher Education and Scientific Research of Tunisia and was funded by the Research Laboratory: LR18 ES07 (Sedimentary Basins and Petroleum Geology). The authors thank Professor Mohamed Ksibi Editor-in-Chief for its insightful comments and Dr. Nabil Khelifi, Senior Editor, Springer, MENA, for judicious recommendations; they are both greatly acknowledged. Professor Marlone H. Hünnig Bom, Itt OCEANEON—UNISINOS University, Brazil and two anonymous reviewers are also thanked for their constructive remarks and comments, which really improved the quality of the manuscript.

Funding

This research was fnancially supported by the Ministry of Higher Education and Scientifc Research of Tunisia, and was funded by the Research Laboratory: LR18 ES07 (Sedimentary Basins and Petroleum Geology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rached Lakhdar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Ahmed El-Kenawy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhdar, R., Talbi, R. Ephemeral signature of anoxia in the southwest Mediterranean coastal lagoon (southeast Tunisia) similar to the sapropel S1. Euro-Mediterr J Environ Integr (2024). https://doi.org/10.1007/s41207-024-00505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-024-00505-3

Keywords

Navigation