Skip to main content

Advertisement

Log in

Hamama volcanogenic massive sulfide deposits, central Eastern Desert, Egypt: mineralogical and tectonic implications

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

The Hamama metavolcanics and their sulfide deposits are an important part of the Neoproterozoic Shadli bimodal metavolcanics in the central Eastern Desert (CED) of Egypt and recently became a promising target for gold exploration in Egypt. Semi-massive to massive sulfide deposits occur in quartz-carbonate exhalite and as disseminated grains in metabasalt and metadacite. The Hamama prospect comprises polymetallic bimodal-mafic-type volcanogenic massive sulfide (VMS) deposits, particularly Zn–Cu–Ag–Au VMS deposits. Polybasite is a silver-bearing sulfosalt (65.17–71.81 wt% Ag). Arsenic-bearing framboidal pyrite is the main host of the precious metals (Au and Ag contents reach up to 0.12 wt% and up to 0.55 wt%, respectively). The arsenic-rich fluids likely promoted gold and silver accumulation in framboidal pyrite, which is hosted in the quartz-carbonate exhalite. This exhalite may have acted as a cap rock preventing the dissipation of the metal-rich hydrothermal fluids. Gold- and silver-bearing sulfides were possibly formed in a back-arc basin, which is considered as a suitable environment for VMS formation. The dominance of Zn and Ag reveals that the Hamama VMS deposits were generated at low temperature and a shallow water depth during rifting of the intra-oceanic island arc. Supergene processes formed secondary copper deposits in the upper part of the exhalite. Gold and silver are also accumulated in the gossan zone that is formed by low-temperature oxidized fluids. The factors controlling precious metal mineralization in the CED of Egypt are possibly related to the composition of the host rock and the hydrothermal fluid beside shear zones that act as channels for fluid circulation in an extensional tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abd Allah AG (2012) Two genetic types of volcanic-hosted massive sulfide mineralizations from the Eastern Desert of Egypt. Arab J Geosci 5:217–231

    CAS  Google Scholar 

  • Abdel-Karim AM, Ali S, Helmy HM, El-Shafei SA (2016) A fore–arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites. Lithos 263:52–65

    ADS  CAS  Google Scholar 

  • Abdel-Karim AM, Ali S, El-Shafei SA (2018) Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt. Int J Earth Sci 107(7):2337–2355. https://doi.org/10.1007/s00531-018-1601-2

    Article  CAS  Google Scholar 

  • Abdel-Karim AM, Ali S, El-Awady A, Elwan W, Khedr MZ, Akihiro T (2019) Mineral and bulk–rock chemistry of Shadli bimodal metavolcanics from Eastern Desert of Egypt: Implication for tectonomagmatic setting and Neoproterozoic continental growth in the Arabian-Nubian Shield. Lithos 338–339:204–217. https://doi.org/10.1016/j.lithos.2019.04.026

    Article  ADS  CAS  Google Scholar 

  • Abdel-Karim AM, El-Awady A, Khedr MZ, El-Afandy AH, Elwan W, Tamura T, Ali S (2022) Genesis of sulfide mineralization, Atshan and Darhib Areas, South Eastern Desert of Egypt: evidence of fluid pathway effects along shear zones. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-05736-y

    Article  Google Scholar 

  • Abdel Nabi A, Aboul Wafa N, El Hawaary MA, Sabet AH (1977) Results of prospecting for gold and rare metals in Wadis Safaga, El Barrud, El Marah and Hamama. Internal report. Geological Survey of Egypt, Cairo, p 24

  • Abd El-Rahman Y, Surour AA, El-Manawy AW, Rifai M, Abdel Motelib A, Ali WK, El Dougdoug AM (2013) Ancient mining and smelting activities in the Wadi Abu Gerida Area, Central Eastern Desert, Egypt: preliminary results. Archaeometry 55:1067–1087

    Google Scholar 

  • Abd El-Rahman Y, Surour AA, El-Manawy AW, El-Dougdoug AA, Omar S (2015) Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn–Cu–Ag–Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system. Int J Earth Sci (Geol Rundsch) 104:625–644

  • Abd El-Rahman Y, Seifert T, Gutzmer J, Said A, Hofmann M, Gärtner A, Linnemann U (2017) The South Um Mongul Cu–Mo–Au prospect in the Eastern Desert of Egypt: from a mid-Cryogenian continental arc to Ediacaran post-collisional appinite-high Ba-Sr monzogranite. Ore Geol Rev 80:250–266. https://doi.org/10.1016/J.OREGEOREV.2016.06.004

    Article  Google Scholar 

  • Abd El-Rahman Y, Gutzmer J, Li X-H, Seifert T, Chao-Feng Li C-F, Xiao-Xiao Ling X-X, Li J (2020) Not all Neoproterozoic iron formations are glaciogenic: Sturtian-aged non-Rapitan exhalative iron formations from the Arabian-Nubian Shield. Miner Deposita 55:577–596. https://doi.org/10.1007/s00126-019-00898-0

    Article  ADS  CAS  Google Scholar 

  • Abdelsalam MG, Stern RJ (1996) Sutures and shear zones in the Arabian-Nubian Shield. J Afr Earth Sci 23:289–310

    Google Scholar 

  • Akaad MK, El-Ramly MF (1960) Geological history and classification of the basement rocks of the central Eastern Desert of Egypt. Geological Survey of Egypt paper no 9. Geological Survey of Egypt, Cairo

  • Ali KA, Stern RJ, Manton WI, Kimura JI, Khamis HA (2009) Geochemistry Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the central Eastern Desert of Egypt: new insight into the ∼750 Ma crust-forming event. Precambrian Res 171:1–22

    ADS  CAS  Google Scholar 

  • Ali KA, Zoheir BA, Stern RJ, Andresen A, Whitehouse MJ, Bishara WW (2016) Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian-Nubian Shield: implications for crustal evolution. Gondwana Res 32:181–192

    ADS  CAS  Google Scholar 

  • Ali S, Ntaflos T, Sami M (2021) Geochemistry of Khor Um-Safi ophiolitic serpentinites, central Eastern desert, Egypt: implications for neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry 81(1):125690. https://doi.org/10.1016/j.chemer.2020.125690

    Article  CAS  Google Scholar 

  • Ali S, Azer MK, Abdel-Karim AM (2023) Origin and evolution of Neoproterozoic metaophiolitic mantle rocks from the Eastern Desert of Egypt: Implications for tectonic and metamorphic events in the Arabian-Nubian Shield. Geol Acta 21:1–21. https://doi.org/10.1344/GeologicaActa2023.21.6. (I–VI)

    Article  CAS  Google Scholar 

  • Al-Shanti AM, El-Mahdy OR, Hassan MA, Hussein AA (1993) A comparative study of five volcanic-hosted sulfide mineralizations in the Arabian Shield. J King Abdulaziz Univ Earth Sci 6:1–33

    Google Scholar 

  • Aton (2012) Technical report on the Abu Marawat concession, Egypt. https://www.atonresources.com/investor-relations/reports-and-presentations. Accessed 16 Mar 2013

  • Aton (2017) Hamama west deposit, Abu Marawat concession, Arab Republic of Egypt. https://www.atonresources.com/news/2017/. Accessed 20 June 2017

  • Azer MK, Farahat ES (2011) Late Neoproterozoic volcano-sedimentary successions of Wadi Rufaiyil, Southern Sinai, Egypt: a case of transition from late-to post-collisional magmatism. J Asia Earth Sci 42:1187–1203

    ADS  Google Scholar 

  • Bailes AH, Galley AG (1999) Evolution of the Paleoproterozoic Snow Lake arc assemblage and geodynamic setting for associated volcanic-hosted massive sulfide deposits, Flin Flon Belt, Manitoba, Canada. Can J Earth Sci 36:1789–1805

    CAS  Google Scholar 

  • Barrie CT, Hannington MD (1999) Classification of volcanic-associated massive sulfide deposits based on host-rock composition. Rev Econ Geol 8:1–11

    Google Scholar 

  • Barrie CT, Nielsen FW, Aussant CH (2007) The Bisha volcanic-associated massive sulfide deposit, western Nakfa Terrane, Eritrea. Econ Geol 102:717–738

    CAS  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicate and oxides. J Geol 76:382–403

    ADS  CAS  Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambrian Res 28:1–74

    ADS  CAS  Google Scholar 

  • Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim Cosmochim Acta 71:624–630

  • Botros NS (2003) On the relationship between auriferous talc deposits hosted in volcanic rocks and massive sulfide deposits in Egypt. Ore Geol Rev 23:223–257

    Google Scholar 

  • Bourcier WL, Barnes HL (1987) Ore solution chemistry—VIII. Stabilities of chloride and bisulfide complexes of zinc to 350 °C. Econ Geol 82:1839–1863

  • Bühler B, Breitkreuz C, Pfänder JA, Hofmann M, Becker S, Linnemann U, Eliwa HA (2014) New insights into the accretion of the Arabian-Nubian Shield: Depositional setting, composition and geochronology of a Mid-Cryogenian arc succession (North Eastern Desert, Egypt). Precambrian Res 243:149–167. https://doi.org/10.1016/j.precamres.2013.12.012

    Article  ADS  CAS  Google Scholar 

  • Butler IB, Grimes ST, Rickard D (1999) Iron sulphide oxidation in an anoxic chemostated reaction system. In: Proc 9th VM Goldschmidt Conf, Cambridge, MA, USA, 22–27 Aug 1999, p 45

  • Callaghan T (2001) Geology and host-rocks alteration of the Henty and Mount Julia gold deposits, Western Tasmania. Econ Geol 96:1073–1088

    CAS  Google Scholar 

  • Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

    CAS  Google Scholar 

  • Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim Cosmochim Acta 140:644–670

    ADS  CAS  Google Scholar 

  • DeMatties TA (1994) Early Proterozoic volcanogenic massive sulfide deposits in Wisconsin: an overview. Econ Geol 89:1121–1151

    Google Scholar 

  • Doe BR (1994) Zinc, copper, and lead in mid-ocean ridge basalts and the source rocks control on Zn/Pb in ocean-ridge hydrothermal deposits. Geochim Cosmochim Acta 58:2215–2223

    ADS  CAS  Google Scholar 

  • Doyle MG, Allen RL (2003) Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geol Rev 23:183–222

    Google Scholar 

  • El-Bialy MZ (2020) Precambrian basement complex of Egypt. In: Hamimi Z, El-Barkooky A, Martínez FJ, Fritz H, Abd El-Rahman Y (eds) The geology of Egypt. Regional geology reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-15265-9_2

    Chapter  Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogenesis of the Pan-African belt in Egypt. In: El-Gaby S, Greiling RO (eds) The Pan-African belt of NE Africa and adjacent areas. Earth evolution sciences. Vieweg and Sohn, Wiesbaden, pp 17–68

    Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 175–184

    Google Scholar 

  • El-Gaby S, Khudeir AA, Abdel Tawab M, Atalla RF (1991) The metamorphosed volcano-sedimentary succession of Wadi Kid, southeastern Sinai, Egypt. Ann Geol Surv Egypt 17:19–35

    Google Scholar 

  • El-Gaby S (1994) Geologic and tectonic framework of the Pan-African Orogenic belt in Egypt. In: Proc 2nd Int Conf on Geology of the Arab World, Cairo, Egypt, 22–26 Jan 1994, pp 3–17

  • Farahat ES, Mohamed HA, Ahmed AF, El Mahallawi MM (2007) Origin of I- and A-type granitoids from the Eastern Desert of Egypt: implications for crustal growth in the northern Arabian-Nubian Shield. J Afr Earth Sci 49:43–58

    CAS  Google Scholar 

  • Fleet ME, Mumin AH (1997) Gold-bearing arsenian pyrite and marcasite from Carlin Trend deposits and laboratory synthesis. Am Mineral 82:182–193

    ADS  CAS  Google Scholar 

  • Fowler A, Ali KG, Omar SM, Eliwa H (2006) The significance of gneissic rocks and synmagmatic extensional ductile shear zones of the Barud area for the tectonics of the North Eastern Desert, Egypt. J Afr Earth Sci 46:201–220

    Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulphide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology (100th anniversary volume). The Economic Geology Publishing Company, Lancaster, pp 523–560

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Ghebreab W, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galley AG (2003) Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Miner Deposita 38:443–473

    ADS  CAS  Google Scholar 

  • Galley AG, Hannington M, Jonasson I (2007) Volcanogenic massive sulphide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Special Publication 5. Mineral Deposits Division, Geological Association of Canada, St. John’s, pp 141–161

  • Gamal El Dien H, Li Z-X, Abu Anbar M, Doucet LS, Murphy JB, Evans NJ, Xia X-P, Li J (2021) Two-stage crustal growth in the Arabian-Nubian shield: initial arc accretion followed by plume-induced crustal reworking. Precambrian Res 359:106211

    CAS  Google Scholar 

  • Gemmell JB, Fulton R (2001) Geology, genesis, and exploration implications of the footwall and hanging-wall alteration associated with the Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Econ Geol 96:003–1035

    Google Scholar 

  • Gill SB, Piercey SJ, Layton-Mattews D, Layne GD, Piercey G (2015) Mineralogical, sulphur, and lead isotopic study of the Lemarchant Zn-Pb-Cu-Ag-Au-VMS deposit: implications for precious-metal enrichment processes in the VMS environment. In: Peter JM, Mercier-Langevin P (eds) Targeted Geoscience Initiative 4: contributions to the understanding of volcanogenic massive sulphide deposit genesis and exploration methods development. Open File 7853. Geological Survey of Canada, Ottawa, pp 183–95

  • Halley SW, Roberts RH (1997) Henty: a shallow-water gold-rich volcanogenic massive sulfide deposit in Western Tasmania. Econ Geol 92:438–447

    CAS  Google Scholar 

  • Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at midocean ridges. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions: Geophysical Monograph 91. American Geophysical Union, pp 115–157

    Google Scholar 

  • Hannington M (2014) Volcanogenic massive sulfide deposits. In: Scott SD (ed) Treatise on geochemistry, vol 13, 2nd edn. Elsevier-Pergamon, Oxford, pp 463–488

    Google Scholar 

  • Hannington MD, Bleeker W, Kjarsgaard IM (1999) Sulphide mineralogy, geochemistry and ore genesis of the Kidd Creek deposit: part II. The bornite zone. Econ Geol Monogr 10:225–266

  • Hannington MD, Santaguida F, Kjarsgaard IM, Cathles LM (2003) Regional greenschist facies hydrothermal alteration in the central Blake River Group, western Abitibi subprovince, Canada. Miner Deposita 38:393–422

    ADS  CAS  Google Scholar 

  • Hannington MD, De Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) 100th anniversary volume of economic geology. Society of Economic Geologists, Littleton, pp 111–142

    Google Scholar 

  • Harbi HM, Surour AA, Davidson GJ (2014) Genesis of Neoproterozoic Au-bearing volcanogenic sulfides and quartz veins in the Ar Rjum goldfield, Saudi Arabia. Ore Geol Rev 58:110–125

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    ADS  CAS  Google Scholar 

  • Hart TR, Gibson HL, Lesher CM (2004) Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu–Zn–Pb sulfide deposits. Econ Geol 99:1003–1013

    CAS  Google Scholar 

  • Hassan YM (2005) Geology and mineralization of the Precambrian rocks at Wadi Hamama area, central Eastern Desert. MSc dissertation. Cairo University, Cairo

  • Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 201–248

    Google Scholar 

  • Helmy HM (1999) The Um Samiuki volcanogenic Zn–Cu–Pb–Ag deposit, Eastern desert, Egypt: a possible new occurrence of Cervelleite. Can Mineral 37:143–158

    CAS  Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at modern seafloor. Ore Geol Rev 10:95–115

    Google Scholar 

  • Huston DL, Taylor T, Fabray J, Patterson DJ (1992) A comparison of the geology and mineralization of the Balcooma and Dry River South volcanic-hosted massive sulfide deposits, Northern Queensland. Econ Geol 87:785–811

    CAS  Google Scholar 

  • Huston DL, Pehrsson S, Eglington BM, Zaw K (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105:571–591

    CAS  Google Scholar 

  • Inverno CMC, Solomon M, Barton MD, Foden J (2008) The Cu stockwork and massive sulfide ore of the Feitais volcanic-hosted massive sulfide deposit, Aljustrel, Iberian Pyrite Belt, Portugal: a mineralogical, fluid inclusion, and isotopic investigation. Econ Geol 103:241–267

    CAS  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high field strength elements between clinopyroxene, garnet and basaltic melt. Contrib Mineral Petrol 133:60–68

    ADS  CAS  Google Scholar 

  • Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebreab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:67–232

    Google Scholar 

  • Kamal El-Din G, Abdelkareem M (2018) Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: implications for structural evolution of the Eastern Desert, Egypt. J Afr Earth Sci 141:179–193

    Google Scholar 

  • Khedr MZ, El-Awady A, Arai S, Hauzenberger C, Tamura A, Stern RJ, Morishita T (2020) Petrogenesis of the ~740 Korab Kansi mafic-ultramafic intrusion, South Eastern Desert of Egypt: evidence of Ti-rich ferropicritic magmatism. Gondwana Res 82:48–72

    ADS  CAS  Google Scholar 

  • Khedr MZ, Al Desouky AA, Takazawa E, Kamh S, Hauzenberger C, Whattam SA, El-Awady A (2023) Remote sensing and geochemical investigations of sulfide-bearing metavolcanic and gabbroic rocks (Egypt): constraints on host-rock petrogenesis and sulfide genesis. Gondwana Res 119:282–312

    ADS  CAS  Google Scholar 

  • Koski RA (2012) Supergene ore and gangue characteristics in volcanogenic massive sulfide occurrence model. US Geological Survey Scientific Investigation Report 2010-5070-C. US Geological Survey, Reson, Chap 12

  • Kröner A, Todt W, Hussein IM, Mansour M, Rashwan AA (1992) Dating of late Proterozoic ophiolites in Egypt and the Sudan using the single grain zircon evaporation technique. Precambrian Res 59:15–32. https://doi.org/10.1016/0301-9268(92)90049-T

    Article  ADS  Google Scholar 

  • Kröner A, Krüger J, Rashwan AAA (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and South-West Sinai. Geol Rundsch 83:502–513

    ADS  Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    CAS  Google Scholar 

  • Large RR, Both RA (1980) The volcanogenic sulfide ores at Mount Chalmers, Eastern Queensland. Econ Geol 75:992–1009

    CAS  Google Scholar 

  • Large RR, Doyle M, Raymond O, Cooke D, Jones A, Heasman L (1996) Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol Rev 10:215–230

    Google Scholar 

  • Leeman WP (1996) Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. American Geophysical Union, Washington, DC, pp 269–276

  • Liaghat S, MacLean WH (1992) The Key Tuffite, Matagami mining district: origin of tuff components and mass changes. Explor Min Geol 1:197–207

    CAS  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    ADS  CAS  Google Scholar 

  • Minex Mineral Egypt (1991) Report on exploration percussion drilling at Hamama (b). Internal Report of the Geological Survey of Egypt 9(b). Geological Survey of Egypt, Cairo

  • Moghazi AM (2003) Geochemistry and petrogenesis of a high-K calc–alkaline Dokhan volcanic suite, South Safaga area, Egypt: the role of late Neoproterozoic crustal extension. Precambrian Res 423:161–178

    ADS  Google Scholar 

  • Mohamed HA, Ali S, Sedki T, Abdelkhalik I (2019) The Sukari Neoproterozoic granitoids, Eastern Desert, Egypt: petrological and structural implications. Afr Earth Sci 149:426–440. https://doi.org/10.1016/j.jafrearsci.2018.08.020

    Article  CAS  Google Scholar 

  • Morishita T, Ishida Y, Arai S, Shirasaka M (2005) Determination of multiple trace element compositions in thin (b30 μm) layers of NIST SRM 614 and 616 using laser ablation–inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 29:107–122

    CAS  Google Scholar 

  • Norman M, Garcia MO, Pietruszka A (2005) Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawaiʼi, and petrogenesis of differentiated rift-zone lavas. Am Miner 90:888–899

    ADS  CAS  Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulphide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177

    Google Scholar 

  • Ohmoto H, Mizukami M, Drummond SE, Eldridge CS, Pisutha-Arnond V, Lenagh T (1983) Chemical processes of Kuroko formation. Econ Geol Monogr 5:570–604

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanal 21:115–144

    CAS  Google Scholar 

  • Peter JM, Goodfellow WD (1996) Mineralogy, bulk and rare earth element geochemistry of massive sulfide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick. Can J Earth Sci 33:252–283

    CAS  Google Scholar 

  • Petersen S, Herzig PM, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner Depos 35:233–259

    ADS  CAS  Google Scholar 

  • Pierce SJ (2011) The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. Miner Deposita 46:449–471

    ADS  Google Scholar 

  • Piercey SJ, Squires GC, Brace TD (2014) Lithostratigraphic, hydrothermal, and tectonic setting of the Boundary volcanogenic massive sulfide deposit, Newfoundland Appalachian, Canada: formation by subseafloor replacement in a Cambrian rifted arc. Econ Geol 109:661–687

  • Poulsen H, Hannington M (1995) Auriferous volcanogenic sulfide deposits. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types. Geology of Canada no. 8. Geological Survey of Canada, Ottawa, 1:183–196

  • Qian Z (1987) Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits. Chin J Geochem 6:177–190

    Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    ADS  CAS  Google Scholar 

  • Riverin G, Hodgson CJ (1980) Wall-rock alteration at the Millenbach Cu–Zn Mine, Noranda, Quebec. Econ Geol 75:424–444

    CAS  Google Scholar 

  • Saha A, Mudholkar AV, Raju KAK, Doley B, Sensarma S (2019) Geochemical characteristics of basalts from Andaman subduction zone: Implications on magma genesis at intraoceanic back-arc spreading centres. Geol J 54(6):3489–3508. https://doi.org/10.1002/gj.3345

    Article  ADS  CAS  Google Scholar 

  • Sami M, Adam MMA, Lv X, Lasheen ESR, Ene A, Zakaly HMH, Alarifi SS, Mahdy NM, Abdel Rahman ARA, Saeed A, Farahat ES, Fathy D, Ali S (2023) Petrogenesis and tectonic implications of the cryogenian I-type granodiorites from Gabgaba Terrane (NE Sudan). Minerals 13(3):331. https://doi.org/10.3390/min13030331

    Article  ADS  CAS  Google Scholar 

  • Santaguida F, Gibson HL, Watkinson DH, Hannington MD (1998) Semi-conformable epidote-quartz hydrothermal alteration in the Central Noranda Volcanic complex: relationship to volcanic activity and VMS mineralization. In: Bailes AH, Galley AG, Hannington MD, Holk G, Katsube J, Paquette F, Paradis S, Santaguida F, Taylor B (eds) The use of regional-scale alteration and subvolcanic intrusions in the exploration for volcanic-associated massive sulphide deposits. Annual report. Canadian Minerals Research Organization Project 94E07. CAMIRO Exploration Division, Toronto, pp 139–180

  • Shalaby IM, Stumpfl E, Helmy HM, El Mahallawi MM, Kamel OA (2004) Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulfide deposit, Eastern Desert, Egypt. Miner Depos 39:608–621

    ADS  CAS  Google Scholar 

  • Shukri NM, Mansour MS (1980) Lithostratigraphy of Um Samiuki district, Eastern Desert, Egypt, vol 4. Institute of Applied Geology, Jeddah University, Jeddah, pp 83–93

    Google Scholar 

  • Simon G, Kesler SE, Chryssoulis S (1999) Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposit ion of gold in Carlin-type deposits. Econ Geol 94:405–421

  • Singer DA (1995) World class base and precious metal deposits; a quantitative analysis. Econ Geol 90:88–104

    CAS  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwana land. Ann Rev Earth Planet Sci 22:319–351

    ADS  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117

    CAS  Google Scholar 

  • Stern RJ, Hedge C (1985) Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127

    ADS  CAS  Google Scholar 

  • Stern RJ, Kröner A, Rashwan AA (1991) A Late Precambrian (~710Ma) high vulcanicity rift in the south Eastern Desert of Egypt. Int J Earth Sci 80:155–170

    CAS  Google Scholar 

  • Stosch H-G (1982) Rare earth partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46:793–811

    ADS  CAS  Google Scholar 

  • Surour A, Bakhsh R (2013) Microfabrics and microchemistry of sulfide ores from the 640 FEW level at the Al Amar gold mine, Saudi Arabia. J Microsc Ultrastruct 1:96–110

    Google Scholar 

  • Takla MA, Suror AA, El-Mansi MM (1998) Microfabrics and mineral chemistry of sulphides from Shadli metavolcanics and younger gabbros, Eastern Desert, Egypt. Anna Geol Surv Egypt XXI:191–215

    Google Scholar 

  • Tauson VL (1999) Gold solubility in the common gold-bearing minerals: experimental evaluation and application to pyrite. Eur J Mineral 11:937–947

    CAS  Google Scholar 

  • Whalen JB, McNicoll VJ, Galley AG, Longstaffe FJ (2004) Tectonic and metallogenic importance of an Archean composite high- and low-Al tonalite suite, Western Superior Province, Canada. Precambrian Res 132:275–301

    ADS  CAS  Google Scholar 

  • Wright K (2009) The incorporation of cadmium, manganese and ferrous iron in sphalerite: insights from computer simulations. Can Mineral 47:615–623

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our great appreciation to the Chief Editor Settimio Ferlisi and two anonymous referees for their significant comments and suggestions, which substantially improved the early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehata Ali.

Additional information

Responsible Editor: Settimio Ferlisi.

This paper belongs to the special issue The 11th International Conference on the Geology of Africa “ICGA-11”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Karim, AA.M., Ali, S., El-Afandy, A.H. et al. Hamama volcanogenic massive sulfide deposits, central Eastern Desert, Egypt: mineralogical and tectonic implications. Euro-Mediterr J Environ Integr 9, 235–254 (2024). https://doi.org/10.1007/s41207-023-00442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-023-00442-7

Keywords

Navigation