Skip to main content

Advertisement

Log in

Potential of and constraints on the application of remote sensing in Tunisia

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Remote sensing is becoming a useful operational tool for decision support. Information obtained from space is increasingly available. Since the American Landsat program in 1972, many countries have embarked on Earth observations, and there are now about 100 operational satellites in orbit. The potential and the results offered by remote sensing are remarkable if we consider the relative ease of obtaining information of any kind (especially environmental parameters) in a short period of time and at a certain distance, which is then repeated over time or even, in some cases, almost continuously. It allows a wide spatial coverage, greater objectivity and accuracy, as well as a lower cost overall than conventional sensing methods. For developed countries, remote sensing represents a revolution in the field of environmental monitoring, since these countries are the main suppliers of spatial data and software for processing these data. Developing countries, including Tunisia, have found themselves obligated to align themselves with these changes and transitions, and to actively work for greater participation in the elaboration of these changes in the most effective way. Remote sensing has been used for more than 40 years in Tunisia. It has been applied in various fields of research and development, such as agriculture, mapping, and planning. The main objective of this work was to assess the potential of remote sensing to be applied in each of these domains in Tunisia through a comparative multi-criteria analysis using the analytic hierarchy process (AHP). Four criteria (data used, tools and software, acquired competence, and financial resources) that have a significant impact on the potential for remote sensing application were included in our analysis. Weights were assigned to each parameter through a pairwise comparison matrix based on the AHP method. The results showed that agriculture and land use planning are the areas where remote sensing has the greatest potential, with high weights for all criteria studied. Regarding the criteria studied, it was observed that the criterion of data used is important for all application areas, followed by skills. For agriculture and land use planning, the criterion of data used (c1) is considered the most important, with a high weight of 59.4%. This suggests that the data used are a crucial influence on the application of remote sensing in these application areas. For its application to mapping, the choice of tools used (c2) is crucial, with a high weight of 31.3% for this criterion. For the environment, costs can be an important factor to consider, with a relatively high weight of 12.9% for the financial resources criteria (c4). The results of our study were validated by comparing them with those of a technology needs assessment report for climate adaptation conducted in Tunisia by the Ministry of Environment and Sustainable Development [United Nations Development Programme (2016) Tunisia: technology needs assessment. Report on climate change adaptation. https://tech-action.unepccc.org/wp-content/uploads/sites/2/2016/05/tunisia-tna-report-1feb2016-adaptation.pdf]. According to this report, the highest-priority sectors for the use of new technologies such as remote sensing in Tunisia are agriculture and water resources management as well as coastal, marine, and urban area management. These sectors were selected because of their weight in the country's economy and their vulnerability to climate change among the various sectors analysed in the report (agriculture and water resources management, management of urban, coastal and marine areas, ecosystem management, tourism and health). We used a sensitivity analysis method called the Morris method. This method estimates the importance of each criterion and each interaction between criteria to the variation in the results. The results of this analysis show that criterion c1 (data used) is the most important for all domains, with sensitivity indices ranging from 12.8 to 17.8%. Criterion c2 (tools and software) is also important for the mapping and environmental domains, with sensitivity indices of 11% and 10.2%, respectively. Criterion C3 (acquired competence) is important for the agriculture and environment domains, with sensitivity indices of 13% and 12.3%, respectively. Finally, criterion c4 (financial resources) is also important for the mapping and agriculture domains, with sensitivity indices of 12.1% and 13%, respectively. In conclusion, the sensitivity analysis shows that the overall results are quite robust to variations in the criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abdouli A (2017) Programme national de surveillance intégrée pour les indicateurs relatifs à la côte et à l’hydrographie. https://iczmplatform.org/storage/documents/xBoZs82J6d5XALe54S3bcbdZ97WGAUugMCVmKjGe.pdf

  • Adeniyi PO (1992) Potentials and constraints of applying remote sensing technology for agricultural resource management in Nigeria. In: UN/USA Int Conf on Satellite Remote Sensing for Resource Management Environmental Assessment and Global Change Studies, Boulder, CO, USA, 17–20 Aug 1992

  • Aouissi HA, Petrişor AI, Ababsa M, Boştenaru-Dan M, Tourki M, Bouslama Z (2021) Influence of land use on avian diversity in north African urban environments. Land 10(4):434. https://doi.org/10.3390/land10040434

    Article  Google Scholar 

  • Arnaud JL (2019) Le plan de Tunis de 1882. Quand la qualité graphique compense la faiblesse des sources. Al-Sabîl 7. http://www.al-sabil.tn/?p=5821

  • Akhrouf M, Derghoum M (2023) The use of a multi-criteria decision support model based on the AHP method for the selection of health infrastructure projects. Int J Analytic Hierarchy Process 15(1):1040. https://doi.org/10.13033/ijahp.v15i1.1040

    Article  Google Scholar 

  • Ahmad S, Khan S, Kamal MA (2015) Role of remote sensing in agriculture: a review. J Biodivers Environ Sci (JBES) 6(3):350–357

    Google Scholar 

  • Bajocco S, Ricotta C (2008) Remote sensing for conservation monitoring: combining open-source tools with J2EE. Eco Inform 3(1):25–34

    Google Scholar 

  • Belghith A (1997) Etude spectroscopique, satellitaire et intégrée de la dégradation des systèmes écologiques en conditions arides (Tunisie présaharienne). PhD thesis. Univ. Paris VII, Paris

  • Ben Hadj Salem A (2011) L’unification des Systèmes Géodésiques Terrestres Tunisiens. TS04A—National Geodesy I, 5273. In: FIG Working Week 2011 (Bridging the Gap between Cultures), Marrakech, Morocco, 18–22 May 2011

  • Belton V, Gear T (1983) On a short-coming of Saaty’s method of analytic hierarchies. Omega 11(3):228–230

    Article  Google Scholar 

  • Ben Mabrouk W, Gabtni H, Ghanmi M (2021) Structural mapping of the Gafsa Basin (Tunisia) using remote sensing and geophysical data. J Afr Earth Sc 178:104160

    Google Scholar 

  • Ben Nasr R, Gabtni H, Ghanmi M (2021) Structural mapping of the Oued El Abid Fault Zone (Central Tunisia) using remote sensing and field data. J Afr Earth Sc 182:104258

    Google Scholar 

  • Ben Saoud I, Jacob F, Kallel A (2012) Application of spectroradiometry for linking field ecological measurements with remote sensing data. The CAMELEO project in Tunisia. J Arid Environ 78:84–92. https://doi.org/10.1016/j.jaridenv.2011.11.011

    Article  Google Scholar 

  • Bodin L, Gass SI (2003) On teaching the analytichierarchy process. Comput Oper Res 30:1487–1497

    Article  Google Scholar 

  • Bonn F, Cliché G, Merzouk A (1990) International cooperation in remote sensing: how can a project become a success? In: 23rd Int Symp on Remote Sensing of the Environment, Bangkok, Thaïland, 17–26 Apr 1990

  • Cai G, Huang C, Sun H, Song C (2019) Remote sensing image classification for land cover mapping: a review. ISPRS J Photogramm Remote Sens 157:43–61

    Google Scholar 

  • Cherif I, Kolintziki E, Alexandridis TK (2023) Monitoring of land degradation in Greece and Tunisia using trends. Earth with a focus on cereal croplands. Remote Sens 15(7):1766. https://doi.org/10.3390/rs15071766

    Article  Google Scholar 

  • CNCT (1996) Rapport national: La télédétection et les systèmes d’information géographique en Tunisie. In: Neuvième Conférence Cartographique Régionale des Nations Unies pour l'Afrique, Addis Ababa, Ethiopia, 11–15 Nov 1996

  • CNCT (2010) Rapport d’activités spatiales. In: 53rd session of COPUOS 09, 9–18 Jun 2010. United Nations, New York

  • Council of Europe, OUA (1989) Rencontre Afrique-Europe de Porto Novo (Bénin, 1989). Report. Council of Europe/OUA, Strasbourg/Addis Ababa

  • Coppin P, Bauer ME (2011) Digital image processing. Wiley, Hoboken

  • Chebbi HE, Pellissier JP, Khechimi W, Rolland JP (2019) Rapport de synthèse sur l’agriculture en Tunisie (hal-02137636). CIHEAM-IAMM, Montpellier

  • Direction Générale de l’Environnement et de la Qualité de la Vie (2017) Inventaire sommaire de l’agrobiodiversité dans les oasis de Tozeur. Direction Générale de l'Environnement et de la Qualité de la Vie, Tunis

  • Directorate General of Forests (DGF) (2010) Evaluation de ressources forestières mondiales (FRA2010/213). Forestry Division, FAO, Rome

  • Dautriat E (2018) EMOTO: Etude de l’Olivier en Tunisie par Imagerie Satellitaire. L’Odyssee de l’Olivier. https://lodysseedelolivier.wordpress.com/2018/01/21/emoto-etude-de-lolivier-en-tunisie-par-imagerie-satellitaire/. Accessed 30 Jan 2023

  • Escadafal R (1989) Caractérisation de la surface des sols arides par observation de terrain et par télédétection. Applications: exemple de la région de Tataouine (Tunisie). Doctoral thesis. Université Paris VI, Paris

  • Emran A, Trache A (2005) Compte rendu du Workshop en Télédétection et SIG "Information spatiale et Développement durable", 14 au 16 novembre 2005, Rabat, Maroc

  • Elakkiya R, Prabakaran MK, Kumaravel S (2018) Geospatial technologies in urban planning: a review. J Urban Manag 7(4):69–87

    Google Scholar 

  • Fentahun MT, Beyene ST (2020) Remote sensing and GIS applications for natural resources management and monitoring: a review. Environ Monit Assess 192(3):186

    Google Scholar 

  • Forman EH, Selly MA (2001) Decision by objectives: how to convince others that you are right. World Scientific, Singapore

  • Fritz S, See L (2008) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern Ethiopian highlands. J Geogr Regional Plann 1(6):104–117

    Google Scholar 

  • Gannouni S (2011) Apport de la télédétection dans le calcul des indices liés aux propriétés de surface pour l’étude diachronique de l’impact des rejets miniers sur l’environnement. Thèse de doctorat, Université Tunis el Manar

  • Ghram A (2009) La dynamique des paysages en milieux arides: Apport de la télédétection et de l'observation de terrain à l'étude de la dégradation des unités morpho-pédologiques dans la région de Menzel- Habib (Tunisie méridionale): Thèse de Doctorat en Géographie, Univ. de Tunis

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  • Institut de l’Olivier (2019) Rapport d’activité 2019. Institut de l'Olivier Sfax, http://www.iosfax.agrinet.tn/

  • IRD (2023) Horizon website documentation. Institut de recherche pour le développement, Paris. https://horizon.documentation.ird.fr/

  • Iwona E, Jarosław K, Andrzej P (2020) Comparison of different multicriteria decision-making methods for the selection of renewable energy sources. Renew Energy 155:732–745

    Google Scholar 

  • Jauffret S (2001) Validation et comparaison de divers indicateurs des changements à long term dans les écosystèmes méditerranéens arides: application au suivi de la désertification dans le Sud tunisien. Doctoral thesis. Université Aix-Marseille III, Marseille

  • Kapetsky JD, Aguilar J (2010) Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture. FAO Fish Tech Paper 458. FAO, Rome

  • LADA (2006) Pour une évaluation de la dégradation des terres en Tunisie. Cadre institutionnel et législatif Information et données disponibles. Etat des connaissances rapport. Ministère de L’Agriculture, des Ressources Hydrauliques et de la Pêche, Tunis

  • Layelmam M (2008) Calcul des indicateurs de sécheresse à partir des images NOAA/AVHRR. IAV/CRTS/CRASTE-LF, Rabat

  • Le Courrier du Vietnam (2017) Les technologies spatiales au service du développement durable de l'économie nationale. Le Courrier du Vietnam 03/04/2017

  • Li D, Ju Q, Jiang P, Huang P, Xu X, Wang Q, Hao Z, Zhang Y (2023) Sensitivity analysis of hydrological model parameters based on improved Morris method with the double-Latin hypercube sampling. Hydrol Res 54(2):220–232. https://doi.org/10.2166/nh.2023.109

    Article  Google Scholar 

  • Li X, Zhang B (2018) Remote sensing applications for mapping and monitoring wetlands: a review. Remote Sensing 10(10):1567

  • Long G, Debussche G, Lacaze B, Le Floc’H E, Pontanier R (1978) Contribution à l’analyse écologique des zones arides de Tunisie avec l’aide des données de la télédétection spatiale. Rapp. géné. exp. ARZOTU 1975–1978. CNRS/CEPE, Montpellier

  • Lu D, Weng Q (2017) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 38(10):2950–2977

    Google Scholar 

  • MEH (1996) Etudes stratégiques élaborée entre 1996 et 2007. Schéma directeur d’aménagement du territoire national (SDATN). Ministère d’équipement et d’habitat, Tunis

  • Maphanyane JG, Mapeo RBM, Akinola MO (eds) (2017) Handbook of research on geospatial science and technologies. IGI Global

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Nguyen TT, Aderdour N, Rhinane H, Buerkert A (2023) Vegetation cover dynamics in the High Atlas mountains of Morocco. Remote Sens 15(5):1366. https://doi.org/10.3390/rs15051366

  • OTC (2010) Communication cartographie du cadastre en Tunisie. Office de la Topographie et du Cadastre, Tunis

  • Osei FB, Aduah L, Afrifa GA (2018) An analysis of the use of GIS and remote sensing in natural resources management in Africa: a review. J Environ Manage 208:129–143

    Google Scholar 

  • Oyana TJ, Margai FM (2019) Remote sensing and GIS-based analysis of land use and land cover changes in the Niger Delta region of Nigeria. Environ Sci Pollut Res 26(15):14825–14839

    Google Scholar 

  • Puech C, Merdas M (1990) La détermination de la limite nord du désert par télédétection. Sécheresse 1:170–178

    Google Scholar 

  • Ryerson R, Hack B (2016) The role of remote sensing in assisted development: experience drawn from work in over 40 countries. Can J Remote Sens 42(4):324–331. https://doi.org/10.1080/07038992.2016.1177448

  • Roy B, Bouyssou D (1993) Aide multicritère à la décision: Méthodes et cas. Economica, Paris

  • Rocchini D, Marcantonio M, Ricotta C, Chiarucci A, Neteler M (2019) Remote sensing in ecology and conservation: from pixel to population. Springer International, Cham

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

  • Sánchez-Azofeifa GA, Castro-Esau KL, Wright J (2017) Advances in remote sensing technologies for ecosystem-based biodiversity assessments. Ecosphere 8(4):e01704

    Google Scholar 

  • UN (2020) Rapport sur les objectifs de développement durable. United Nations, New York, https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020_French.pdf

  • UNESCO (2004) Télédétection par satellite pour le développement durable pour le développement durable. Connexion 14(1–2):1–3

  • United Nations Development Programme (2016) Tunisia: technology needs assessment. Report on climate change adaptation. https://techaction.unepccc.org/wp-content/uploads/sites/2/2016/05/tunisia-tna-report-1feb2016-adaptation.pdf

  • WSSD (2002) Rapport du sommet. In: Sommet mondial pour le développement durable, 26 Aug–4 Sept 2002, Johannesburg, South Africa

  • Yergeau M, Gozé Bénié B, Bonn F, Prévost C (1991) Satellites et gestion de l’eau au Sahel. Sécheresse 2(1):48–60

  • Yessef M , Saltani Z (2009) Mise en place d’un système d’alerte précoce a la sècheresse dans 3 pays de la rive sud de la méditerranée: l’Algérie, le Maroc et la Tunisie (LIFE05TCY/TN/000150). Synthèse des zonages rapport final. MADRPM, Rabat

  • Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

Download references

Funding

All authors state that there are no financial sources for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Conceptualization and research design: SG, AGM, RR. Methodology and data analysis: SG, AGM, RR. Discussion of the results: SG, AGM, RR and NR. Writing—original draft preparation: SG, AGM and NR. Writing—review and editing: SG, AGM, RR and NR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sonia Gannouni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Anthony Lehmann.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gannouni, S., Messedi, A.G., Riahi, R. et al. Potential of and constraints on the application of remote sensing in Tunisia. Euro-Mediterr J Environ Integr 8, 999–1014 (2023). https://doi.org/10.1007/s41207-023-00399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-023-00399-7

Keywords

Navigation