Skip to main content

Advertisement

Log in

Identification and monitoring of groundwater potential zones using geospatial techniques (Siliana, Tunisia)

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Groundwater is considered a major and important source of water for drinking, agriculture, and industry. Groundwater management and monitoring is a great challenge for policy makers. Therefore, the main objective of this work was to emphasize the problem of accessibility to drinking water in the Siliana region, Tunisia, through groundwater prospecting and the identification of groundwater potential zones (GWPZs). A multidisciplinary approach based on several datasets and techniques such as remote sensing, multi-criteria analysis, and a spatially referenced hydrogeological information system was adopted. Eight thematic layers (geomorphology, slope, lineament density, drainage density, land use/land cover, precipitation, lithology, and soil) with significant effects on groundwater availability were integrated into our analysis. Weights were assigned to each parameter through an analytic hierarchy process (AHP)-based pairwise comparison matrix. The results indicated that the majority of the area shows significant groundwater potential. The results obtained showed that 0.45% of the study area has low potential, 70.30% has medium potential, and 29.34% has high potential. The validation of the results was conducted by initially comparing them with the locations of existing wells and boreholes and then by linking them with maps representing flow rates and transmissivities of water boreholes. Studying the locations of boreholes and wells in the study area, we found that the majority of the drilled wells are situated in high GWPZs, indicating significant potential for water storage. This finding is correlated by the wells identified in the study area. In fact, out of the total of 93 perennial wells in the present study area, 61.29% were found to be in high GWPZs, 36.56% were in medium GWPZs, and 2.15% were in low GWPZs. Overlaying the flow rate map with the GWP map indicated that 87.5% of the medium-flow drilling is located in high-GWP zones. Drilling carried out between the interception zones of medium and strong GWP shows a maximum flow of 115 l/s. Overlaying the transmissivity map with the GWP map indicated that high transmissivity is present in high-GWP zones. A comprehensive sensitivity analysis of a GIS-based Multi-Criteria Decision Making (MCDM) model was conducted to evaluate the criteria and their impact on the final model outputs. The lineament density factor was identified as the most important factor in the AHP model. This finding could help local decision makers to implement sustainable strategies for groundwater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdalla F (2012) Mapping of groundwater prospective zones using remote sensing and GIS techniques: a case study from the Central Eastern Desert, Egypt. J Afr Earth Sci 70:8–17. https://doi.org/10.1016/j.jafrearsci.2012.05.003

  • Action contre la faim (2005) Water, sanitation and hygiene for populations at risk. Hermann, Paris

  • Andualem TG, Demeke GG (2019) Groundwater potential assessment using GIS and remote sensing: a case study of Gunatana landscape, upper Blue Nile Basin. J Hydrol. https://doi.org/10.1016/j.ejrh.2019.100610

    Article  Google Scholar 

  • Arshad A, Zhang Z, Zhang W, Dilawar A (2020) Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front. https://doi.org/10.1016/j.gsf.2019.12.013

    Article  Google Scholar 

  • Ashwini K, Verma KR, Sriharsha S, Chourasiya S, Singh A (2023) Delineation of groundwater potential zone for sustainable water resources management using remote sensing-GIS and analytic hierarchy approach in the state of Jharkhand. India. Groundw Sustain Dev 21:100908. https://doi.org/10.1016/j.gsd.2023.100908

  • Askari KOA, Shayannejad M (2021) Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environ Dev Sustain 23:15943–15959. https://doi.org/10.1007/s10668-021-01323-1

    Article  Google Scholar 

  • Askari KOA, Shayannejad M, Kharazi HG (2017) Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan. Iran KSCE J Civ Eng 21:134–140. https://doi.org/10.1007/s12205-016-0572-8

    Article  Google Scholar 

  • Baka D, Lasm T, Solange OYM, Yao KT, Ta Youan M (2012) Relation entre la densité surfacique de fractures et le débit spécifique dans la région d’Oumé (Centre-Ouest de la Côte d’Ivoire). Rev CAMES Sér A 13(2):230–234

  • Ben Ayed N (1975) Etude géologique des cuvettes de Siliana et de Sers (Atlas tunisien central). Doctoral thesis. Université Paris VI, Paris.

  • Ben Chelbi M (2007) Analyse tectonique des structures liées à la faille de Tunis-Ellès. Doctoral thesis. Univ. Tunis El Manar, Tunis, p 263.

  • Besbes M, Chahed J, Hamdane A (2014) Sécurité hydrique de la Tunisie, Gérer l’eau en conditions de pénurie. Editions L’Harmattan, Paris

  • Biemi J (1992) Contribution à l’étude géologique, hydrogéologique et par télédétection des bassins versants subsahéliens du socle précambrien d’Afrique de l’Ouest: Hydrostructurale, Hydrodynamique, Hydrochimie et Isotopie des aquifères discontinus de sillons et aires granitiques de la haute Marahoué (Côte d’Ivoire). Doctoral thesis. Université d’Abidjan, Abidjan

  • Biemi J, Deslands S, Gwyn QHJ, Jourda P (1991) Influence des linéaments sur la productivité des forages dans le bassin versant de la haute Marahoué, Côte d’Ivoire apport de la télédétection et d’un Système d’Information Hydrogéologique à référence spatiale. Télédétection et Gestions des Ressources 7:23–25

  • Bondin L, Gass SI (2003) On teaching the analytic hierarchy process. Comput Oper Res 30(10):1487–1497. https://doi.org/10.1016/S0305-0548(02)00188-0

    Article  Google Scholar 

  • Boughariou E, Allouche N, Ben Brahim F, Nasri G, Bouri S (2021) Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environ Dev Sustain 23(2):1–26. https://doi.org/10.1007/s10668-021-01270-x

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude géologique de la Tunisie centrale. Doctoral thesis. Ann Mines Géologie (Tunis) 18:345

  • Castany G (1951) Etude géologique de l’Atlas tunisien oriental. Doctoral thesis. Ann Mines Géologie (Tunis) 8:632

  • Castany G, Margat J (1977) Dictionnaire français d’hydrogéologie. Editions du BRGM, Orléans

  • Chihi L (1995) Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne: étude structurale et leur signifcation dans le cadre géodynamique de la Méditerranée centrale. Doctoral thesis. Université de Tunis El Manar, Tunis

  • Chihi H, MarsilyGd BH, Yahyaoui H (2015) Relationship between tectonic structures and hydrogeochemical compartmentalization in aquifers: example of the “Jeffara de Medenine” system, south–east Tunisia. J Hydrol Reg Stud 4:410–430. https://doi.org/10.1016/j.ejrh.2015.07.004

  • Copernicus (2023) Open Access Hub. https://scihub.copernicus.eu

  • Dali T, Mahjoub K (2001) Carte géologique 1/50 000 du Jebel Bargou (feuille n° 47). Service Géologique des Mines, Office National des Mines, Tunis

  • Dali T, Mahjoub K (2002) Notice explicative de la carte géologique 1/50 000 du Jebel Bargou (feuille n°47). Service Géologique des Mines, Office National des Mines, Tunis

  • Das S (2017) Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Model Earth Syst Environ 3:1589–1599. https://doi.org/10.1007/s40808-017-0364-0

    Article  Google Scholar 

  • De Vries JJ (2001) Simmers I (2001) Groundwater recharge: an overview of processes and challenges. J Hydrol 10(5):17110–17123

    Google Scholar 

  • De Dreuzy JR, Davy P, Bour O (2002) Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour Res 38(12):12–19. https://doi.org/10.1029/2001WR001009

    Article  Google Scholar 

  • De Vries JJ, Selaolo ET, Beekman HE (2000) Groundwater recharge in the Kalahari, with reference to paleo-hydrologic conditions. J Hydrol 238:110–123

    Article  Google Scholar 

  • DGRE (2018) Annuaires de l’exploitation des nappes phréatiques de 2005 jusqu’à 2015. DGRE, Tunis

  • Echogdali FZ, Boutaleb S, Abioui M, Aadraoui M, Bendarma A, Kpan RB, Ikirri M, El Mekkaoui M, Essouissi S, El Ayadu H, Abdelrahman K, Fnais MS (2023) Spatial mapping of groundwater potentiality applying geometric average and fractal models: a sustainable approach. Water 15(2):336. https://doi.org/10.3390/w15020336

  • Effat HA, Hassam OA (2013) Designing and evaluation of three alternatives highway routes using the Analytical Hierarchy Process and the least-cost path analysis, application in Sinai Peninsula, Egypt J Remote Sens Space Sci 16(2):141–151. https://doi.org/10.1016/j.ejrs.2013.08.001

  • Faillat JP (1985) Aquifères fissurés en zone tropicale humide: structure, hydrodynamique et hydrochimie (Afrique de l’Ouest). Doctoral thesis. Université Languedoc de Montpellier, Montpellier

  • Fakhraoui M (2002) Notice explicative de la carte géologique 1/50 000 de Siliana (feuille n°43). Service Géologique des Mines, Office National des Mines, Tunis

  • Ferozu RM, Jahan CS, Aref R, Mazumder QH (2019) Groundwater potentiality study in drought prone barind tract, NW Bangladesh using remote sensing and GIS. Groundw Sustain Dev 8:205–215

    Article  Google Scholar 

  • Forman EH, Selly MA (2001) Décision par objectifs: comment convaincre les autres que vous avez raison. World Scientific, Singapore

  • GWRDB (Groundwater Resources Development Board) (2015) Study of hard rock aquifers in hill and mountainous area of Badigad Catchment, Western Development Region, Nepal. Final report. Groundwater Resources Development Board, Kathmandu

  • Hammouri N, El-Naqa A, Barakat M (2012) An integrated approach to groundwater exploration using remote sensing and geographic information system. J Water Resour Prot. https://doi.org/10.4236/jwarp.2012.49081

    Article  Google Scholar 

  • Horton R (1945) Erosional development of stream amd their drainage basins; hydrophysical approach to quantitative morphology. GSA Bull 56(3):275–370

  • Ibrahim U, Mutua F (2014) Lineament extraction using Landsat 8 (OLI) in Gedo. Somal Int J Sci Res (IJSR) 3(9):22

  • Ibrahim-Bathis K, Ahmed SA (2016) Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt J Rem Sens Space Sci 19(2):223–234. https://doi.org/10.1016/j.ejrs.2016.06.002

  • Institut national de météorologie (INM) (2018) Tableaux climatiques mensuels archives INM pour la période de 2012–2017. Siliana. INM, Tunis

  • Jakeman AJ, Barreteau OJ, Hunt R, Rinaudo JD RA (2016) Integrated groundwater management. Concepts, approaches and challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-23576-9

  • Jauzein A (1967) Contribution à l’étude géologique des confns de la dorsale tunisienne. Ann Mines Géol (Tunis) 22:443

  • Jourda JRP (2005) Méthodologie d’application des techniques de Télédétection et des systèmes d’information géographique à l’étude des aquifères fissurés d’Afrique de l’Ouest. Concept de l’hydrotechnique spatiale: cas des zones tests de la Côte d’Ivoire. Doctoral thesis. Université de Cocody, Abidjan

  • Julien J (2011) Pratique de l’analyse de sensibilité: comment évaluer l’impact des entrées aléatoires sur la sortie d’un modèle mathématique. Publ. IRMA, Lille, 71:3

  • Kaliraj S, Chandrasekar N, Magesh NS (2014) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci 7:1385–1401

    Article  Google Scholar 

  • Kouamé KF, Akaffou AG, Lasm T, De Dreuzy JR, Davy P, Bour O (2005) Simulation des écoulements dans les réservoirs fracturés: application au socle Archéen de Touba (Nord-Ouest de la Côte d’Ivoire). In: Proc SITIS 05, Yaoundé, Cameroon, 27 Nov–1 Dec 2005, pp 39–46

  • Kouamé KF (1999) Hydrogéologie des aquifères discontinus de la région semi montagneuse de Man-Danané (Ouest de la Côte d’Ivoire). Apport des données des images satellitales et des méthodes statistique et fractale à l’élaboration d’un système d’information hydrogéologique à référence spatiale. Doctoral thesis. Université de Cocody, Abidjan

  • Kumar MG, Agarwal AK, Bali R (2008) Delineation of potential sites for water harvesting structures using remote sensing and GIS. J Ind Soc Remote Sens 36(4):323–334

    Article  Google Scholar 

  • Lasm T, Kouame F, Soro N, Jrouda JPR, Biemi J (2004) Analyse géostatistique de la fracturation extraite de l’imagerie spatiale aéroportée et satellitaire. Application à la région de Man-Danané (Ouest de la Côte d’Ivoire). Rev Ivoir Sci Technol 5:135–154

  • Lasm T (2000) Hydrogéologie des réservoirs fracturés de socle: analyse statistique et géostatistique de la fracturation et des propriétés hydrauliques. Application à la région des montagnes de Côte d’Ivoire (domaine Archéen). Doctoral thesis. Université de Poitiers, Poitiers

  • Leake C, Malczewski J (2012) GIS and multicriteria decision analysis. J Oper Res Soc 51:247–248

  • Lentswe GB, Molwalefhe L (2020) Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J Hydrol Reg Stud 28:100674. https://doi.org/10.1016/j.ejrh.2020.100674

  • Levintal E, Kniffin ML, Ganot Y, Marwaha N, Murphy NP, Dahlke HE (2023) Agricultural managed aquifer recharge (Ag-MAR)—a method for sustainable groundwater management. Crit Rev Environ Sci Technol 53:2023

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district Tamil Nadu using remote sensing GIS and MIF techniques. Geosci Front 3(2):189–196

  • N’Go YA, Lasm T, Koita M, Savane I (2010) Extraction par télédétection des réseaux de fractures majeures du socle précambrien de la région de Dimbokro (Centre Est de la Côte d’Ivoire). Rev Télédétection 9(1):33–42

  • Naidu C, Reddy B, Mouli C (2015) Delineation of groundwater potential zones using remote sensing and GIS techniques: a case study of Sarada Gedda sub watershed. J Eng Res Int. https://doi.org/10.17577/IJERTV4IS110431

  • N’guessan Bi VH, Saley MB, Wade S, Djagoua EV, Kouamé F, Affian K (2015) Extraction par télédétection et analyse statistique du réseau de fractures, en milieu de socle, dans le département de Sinfra (Centre-Ouest de la Côte d’Ivoire). Innovat Space Sci Res J 13(1):225–238

  • Nsiah E, Appiah-Adjei EK, Adjei KA, (2018) Hydrogeological delineation of groundwater potential zones in the Nabogo basin Ghana. J Afr Earth Sc 143:1–9

    Article  Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area. Greece J Hydrol 525:197–208. https://doi.org/10.1016/j.jhydrol.2015.03.056

  • Papamichael P, Voukkali I, Loizia P, Pappas G, Zorpas AA (2023) Existing tools used in the framework of environmental performance. Sustain Chem Pharm 32:101026. https://doi.org/10.1016/j.scp.2023.101026

  • Pathak D, Shrestha S (2016) Delineation of groundwater potential zones in rocky aquifers in the mountainous area of Central Nepal. J Nepal Geol Soc 50:161–169. https://doi.org/10.3126/jngs.v50i1.22878

    Article  Google Scholar 

  • Patra S, Mishra P, Mahapatra SC (2018) Delineation of groundwater potential zone for sustainable development: a case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. J Clean Prod 172:2485–2502

    Article  Google Scholar 

  • Pradhan AMS, Kim YT, Shrestha S, Huynh T, Nguyen B (2020) Application of deep neural network to capture groundwater potential zone in mountainous terrain. Nepal Himalaya Environ Sci Pollut Res 28:18501–18517. https://doi.org/10.1007/s11356-020-10646-x

    Article  Google Scholar 

  • Rahman MA, Rusteberg B, Gogu RC, Ferreira JL, Sauter M (2012) A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge. J Environ Manag 99:61–75

    Article  Google Scholar 

  • Rajaveni SP, BrindhaK EL (2017) Geological and geomorphological controls on groundwater occurrence in a hard rock region. Appl Water Sci 7(3):1377–1389

    Article  Google Scholar 

  • Riahi B, Guellela R, Gannouni S (2022) Enhanced characterization of fractured aquifers in Siliana-Jebel Bargou region (North West Tunisia). Arab J Geosci 15(458):2022. https://doi.org/10.1007/s12517-022-09730-y

    Article  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83. https://doi.org/10.1504/IJSSCI.2008.017590

    Article  Google Scholar 

  • Savané I, Gozé B, Biemi J (1977) Évaluation des ressources en eau dans le socle par l’étude des fractures à l’aide des données LANDSAT (bassin d’Odienné, Côte d’Ivoire). Actes de l’Atelier international sur la télédétection et la gestion des ressources en eau. FAO, Rome, pp 144–156. http://www.fao.org/docrep/w7320b/w7320b11.htm#TopOfPage.

  • Savané I, Goze BBQ, Hugh JGWJN (1997) Assessment of the productivity of basement structures by the study of fractures and gis in the northwestern region of Côte d’Ivoire. In: Hard Rock Hydrosystems (Proceedings of Rabat Symposium S2, May 1997). IAHS Publ. No. 241

  • Serele C, Perez-Hoyos A, Kayitakire F (2020) Mapping of groundwater potential zones in the drought-prone areas of south Madagascar using geospatial techniques. Geosci Front 11:1403–1413. https://doi.org/10.1016/j.gsf.2019.11.012

    Article  Google Scholar 

  • Singh LK, Jha MK, Chowdary VM (2018) Assessing the accuracy of GIS-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecol Indic. 91:4–37

  • Sinha R, Gupta S, Nepal S (2018) Groundwater dynamics in North Bihar plains. Curr Sci 114(12):2482

    Article  Google Scholar 

  • Talebmorad H, Askari KOA (2022) Hydro geo-sphere integrated hydrologic model in modeling of wide basins. Sustain Water Resour Manag 8:118. https://doi.org/10.1007/s40899-022-00689-y

    Article  Google Scholar 

  • Turanyi T (1990) Sensitivity analysis of complex kinetic system, tools and applications. J Math Chem 5:203–248

    Article  Google Scholar 

  • Turki MM (1985) Polycinématique et contrôle sédimentaire associer sur la cicatrice Zaghouan–Nebhana. Doctoral thesis. Univ. Tunis, Tunis

  • United Nations (2022) The United Nations World Water Development Report. Making the invisible visible. UNESCO, Paris

  • USGS (2023) EarthExplorer. https://earthexplorer.usgs.gov

  • Yeh HF, Cheng YS, Lin HI, Lee CH (2016) Mapping groundwater recharge potential zone using a GIS approach in Hualian River. Taiwan Sustain Environ Res 26:33–43

    Article  Google Scholar 

  • Zomlot Z, Verbeiren Z, Huysmans B, Batelaan O (2015) Spatial distribution of groundwater recharge and base flow: assessment of controlling factors. J Hydrol 4:349–368. https://doi.org/10.1016/j.ejrh.2015.07.005

    Article  Google Scholar 

Download references

Funding

All authors state that there are no financial sources for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Conceptualization and research design: S, RR; methodology and data analysis: SG, RR; discussion of the results: SG, RR, MK; writing—original draft preparation: SG, RR, MK; writing—review and editing: SG, RR, MK, NR, RF. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sonia Gannouni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Costanza Cambi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gannouni, S., Riahi, R., Kefi, M. et al. Identification and monitoring of groundwater potential zones using geospatial techniques (Siliana, Tunisia). Euro-Mediterr J Environ Integr 8, 1015–1034 (2023). https://doi.org/10.1007/s41207-023-00395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-023-00395-x

Keywords

Navigation