Skip to main content

Advertisement

Log in

Multi-criteria decision-making approach for selecting an alternative wastewater treatment plant site in urban areas of Laghouat (North-Central Algeria)

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Environmental projects need decision-making that integrates environmental, socio-political, and economic factors. Finding a suitable location for a wastewater treatment plant (WWTP) can be a complex and challenging task for the government department, as it requires consideration of numerous geographic factors and their interactions. Located in North-Central Algeria, the city of Laghouat is vulnerable to natural hazards such as unpredictable floods of M'zi wadi that pose a threat to life and property in the surrounding urban and rural areas, as well as to the current WWTP. It is worth mentioning that prior studies related to WWTP concerns and possible solutions at the local or regional level have not been carried out. The purpose of the work reported in this paper was to select an alternative WWTP site in the urban areas of Laghouat City by using the analytic hierarchy process (AHP) and geographic information systems (GIS). Various alternative sites for a WWTP are presented and evaluated; the results of the analysis reveal that 2.12%, 68.25%, 29.36%, and 0.27% of the total area are of high, moderate, low, and very low suitability, respectively, for siting a WWTP, respectively. The southeast part of the study area, which has a low elevation and flat gradients, has the most appropriate candidate sites. Three possible sites were identified: site A is the most advantageous; it would be a very good site for maximizing the WWTP’s performance and effectiveness, and there is the possibility of using treated wastewater for nearby agriculture. The final suitability map can assist local government agencies and departments in making sustainable decisions in the planning phases of engineering projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelkarim A, Awawdeh MM (2020) Integrating GIS accessibility and location-allocation models with multicriteria decision analysis for evaluating quality of life in Buraidah city. KSA Sustainability 12(4):1412. https://doi.org/10.3390/su12041412

    Article  Google Scholar 

  • Abdelkarim A, Alogayell HM, Alkadi I, Youssef I (2020) Mapping of GIS-land use suitability in the rural–urban continuum between Ar Riyadh and Al Kharj Cities, KSA based on the integrating GIS multi criteria decision analysis and analytic hierarchy process. Environments 7(10):75. https://doi.org/10.3390/environments7100075

    Article  Google Scholar 

  • Addis A (2021) Selection of wastewater treatment plant site for Bahir Dar Town, Ethiopia using multi-criteria analysis on GIS platform. Civil Environ Res. https://doi.org/10.7176/cer/13-3-02

  • Aissaoui A (2016) Hydrologie et hydrogéologie du bassin versant de Oued M’zi (Laghouat, Algérie). Magister dissertation. Université Mohamed Ben Ahmed d'Oran 2 (In French)

  • Akhoundi A, Nazif S (2018) Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J Clean Prod 195:1350–1376. https://doi.org/10.1016/j.jclepro.2018.05.220

    Article  Google Scholar 

  • Allan J (2002) The Middle East Water Question: hydropolitics and the global economy. Tauris, London/New York

    Google Scholar 

  • Anagnostopoulos KP, Vavatsikos A (2007) Using GIS and fuzzy logic for wastewater treatment processes site selection: the case of Rodopi Prefecture. AIP Conf Proc https://doi.org/10.1063/1.2836227

    Google Scholar 

  • Anagnostopoulos K, Vavatsikos A (2012) Site suitability analysis for natural systems for wastewater treatment with spatial fuzzy analytic hierarchy process. J Water Resour Plan Manag 138(2):125–134. https://doi.org/10.1061/(asce)wr.1943-5452.0000155

    Article  Google Scholar 

  • Arrighi C, Masi M, Iannelli R (2018) Flood risk assessment of environmental pollution hotspots. Environ Model Softw 100:1–10. https://doi.org/10.1016/j.envsoft.2017.11.014

    Article  Google Scholar 

  • Asante PA, Barimah AO (2012) Site suitability analysis for a central wastewater treatment plant (S) In Accra Metropolitan Area using geographic information system. Appl Geoinform Soc Environ 7(2):191–197. ISSN:0976–1330

  • Aulbach JJ (1987) Flood damage reduction techniques for wastewater treatment facilities. Doctoral dissertation. Virginia Polytechnic Institute and State University, Blacksburg

  • Awad A, Wazzan A, Mansour R (2014) Using GIS & fuzzy AHP for selecting the suitable sites for wastewater treatment plants in the city of Tartous. Tishreen Univ J Eng Sci Ser 36(6) (In Arabic)

  • Bakir HA (2001) Sustainable wastewater management for small communities in the Middle East and North Africa. J Environ Manag 61(4):319–328. https://doi.org/10.1006/jema.2000.0414

    Article  Google Scholar 

  • Berhail S (2019) The impact of climate change on groundwater resources in northwestern Algeria. Arab J Geosci 12:770. https://doi.org/10.1007/s12517-019-4776-3

    Article  Google Scholar 

  • Blumenau A., Brooks C, Finn E, Turner A. (2011) Effects of sea level rise on water treatment & wastewater treatment facilities. Worcester Polytechnic Institute, Worcester

  • Bouhamam A (2013) Plusieurs projets pour protéger Laghouat des risques d'inondations (Several projects to protect Laghouat from flood damage). Le Temps d'Algérie 10/02/2013. https://www.djazairess.com/fr/letemps/85341. Accessed 13 March 2022 (In French)

  • Bouhamam A (2019) Pluies diluviennes à Laghouat: d’importants dégâts matériels enregistrés (Torrential rains in Laghouat: significant material damage recorded). Liberté. http://www.liberte-algerie.com/actualite/dimportants-degats-materiels-enregistres-323504. Accessed 13 March 2022 (in French)

  • Chabuk AJ, Al-Ansari N, Hussain HM, Knutsson S, Pusch R (2017) GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ Earth Sci 76(5). https://doi.org/10.1007/s12665-017-6524-x

  • Chenafi A (2013) Cartographie et protection qualitative des eaux souterraines en zone aride, cas de Metlili-Milok, Atlas saharien central (Laghouat-Algérie). Doctoral dissertation. Université Mohamed Ben Ahmed d'Oran 2 (In French)

  • Choi H, Suh E, Suh C (1994) Analytic hierarchy process: It can work for group decision support systems. Comput Ind Eng 27(1–4):167–171. https://doi.org/10.1016/0360-8352(94)90262-3

    Article  Google Scholar 

  • Civil Protection Department (DPC) (2016) September 2016 flood event: report on the civil protection assistance interventions. Synthesis report. Civil Protection Department of Laghouat, Laghouat

  • Danumah JH, Odai SN, Saley BM, Szarzynski J, Thiel M, Kwaku A, et al. (2016) Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques (Cote d’Ivoire). Geoenvironmental Disasters 3(1). https://doi.org/10.1186/s40677-016-0044-y

  • Deng Z, Wang J (2020) Multi-sensor data fusion based on improved analytic hierarchy process. IEEE Access 8:9875–9895. https://doi.org/10.1109/access.2020.2964729

  • Department of Public Works (DTP) (2017) Effondrement de l’ouvrage d’art sur Oued M’zi au Niveau de Sidi Hakoum (a collapse of Sidi Hakoum Bridge). Direction des Travaux Publics de la Wilaya de Laghouat, Laghouat (In French)

  • Dewalkar SV, Shastri SS (2022) Integrated life cycle assessment and life cycle cost assessment based fuzzy multi-criteria decision-making approach for selection of appropriate wastewater treatment system. J Water Process Eng 45:102476. https://doi.org/10.1016/j.jwpe.2021.102476

  • DREW (2012) Etude d'avant-projet détaillé de l'alimentation en eau potable à partir du Barrage de Seklafa W. De Laghouat. Mission 01: etude préliminaire. Rapport de synthèse. Ministère des Ressources en Eau, Algiers (In French)

  • Droogers P, Immerzeel WW, Terink W, Hoogeveen J, Bierkens MFP, Van Beek LPH, Debele B (2012) Water resources trends in Middle East and North Africa towards 2050. Hydrol Earth Syst Sci 16(9):3101–3114. https://doi.org/10.5194/hess-16-3101-2012

    Article  Google Scholar 

  • Dursun M (2018) A new integrated fuzzy MCDM approach and its application to wastewater management. Int J Intell Syst Appl Eng 1(6):19–28. https://doi.org/10.18201/ijisae.2018634723

  • Effat AH, Hegazy NM (2012) Mapping potential landfill sites for North Sinai cities using spatial multicriteria evaluation. Egypt J Remote Sens Space Sci 15(2):125–133. https://doi.org/10.1016/j.ejrs.2012.09.002

  • EPA (1981) Process design manual for land treatment of municipal wastewater. US Environmental Protection Agency, Washington, DC

  • Ersoy H, Bulut F (2009) Spatial and multi-criteria decision analysis-based methodology for landfill site selection in growing urban regions. Waste Manag Res 27(5):489–500. https://doi.org/10.1177/0734242x08098430

  • Fang CL, Bao C, Huang JC (2007) Management Implications to water resources constraint force on socio-economic system in rapid urbanization: a case study of the Hexi Corridor. NW China Water Res Manag 21(9):1613–1633. https://doi.org/10.1007/s11269-006-9117-0

  • Fernandez DS, Lutz MA (2010) Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol 111(1–4):90–98. https://doi.org/10.1016/j.enggeo.2009.12.006

    Article  Google Scholar 

  • Food And Agriculture Organization of The United Nations (FAO) (2006) Guidelines for soil description, 4th edn. FAO, Rome

  • Gaulke LS, Weiyang X, Scanlon A, Henck A, Hinckley T (2009) Evaluation criteria for implementation of a sustainable sanitation and wastewater treatment system at Jiuzhaigou National Park, Sichuan Province. China Env Manag 45(1):93–104. https://doi.org/10.1007/s00267-009-9398-1

  • Goepel KD (2018) BPMSG AHP priority calculator. https://bpmsg.com/ahp/ahp-calc.php. Accessed 28 May 2022

  • Goldbloom-Helzner D, Opie J, Pickard B, McFeely M (2015) Flood resilience: a basic guide for water and wastewater utilities. Proc Water Environ Fed 8:2029–2032. https://doi.org/10.2175/193864715819555715

  • Hadour A, Mahé G, Meddi M (2020) Watershed based hydrological evolution under climate change effect: an example from North Western Algeria. J Hydrol Reg Stud 28:100671. https://doi.org/10.1016/j.ejrh.2020.100671

  • Hamlat A, Errih M, Guidoum A (2013) Simulation of water resources management scenarios in western Algeria watersheds using WEAP model. Arab J Geosci 6(7):2225–2236. https://doi.org/10.1007/s12517-012-0539-0

    Article  Google Scholar 

  • Hamlat A, Tidjani AEB, Yebdri D, Errih M, Guidoum A (2014) Water quality analysis of reservoirs within Western Algeria catchment areas using water quality index CCME WQI. J Water Supply Res Technol AQUA 63(4):311–324. https://doi.org/10.2166/aqua.2013.226

    Article  Google Scholar 

  • Hamlat A, Guidoum A, Koulala I (2017) Status and trends of water quality in the Tafna catchment: a comparative study using water quality indices. J Water Reuse Desalination 7(2):228–245. https://doi.org/10.2166/wrd.2016.155

  • Hamlat A, Kadri CB, Guidoum A (2021) Bekkaye H (2021) Flood hazard areas assessment at a regional scale in M’zi wadi basin. Algeria J Afr Earth Sci 182:104281. https://doi.org/10.1016/j.jafrearsci.2021.104281

    Article  Google Scholar 

  • Hamlat A, Guidoum A (2018). Assessment of groundwater quality in a semiarid region of Northwestern Algeria using water quality index (WQI). Appl Water Sci 8(8). https://doi.org/10.1007/s13201-018-0863-y

  • Ho JY, Ooi J, Wan YK, Andiappan V (2021) Synthesis of wastewater treatment process (WWTP) and supplier selection via fuzzy analytic hierarchy process (FAHP). J Clean Prod 314:128104. https://doi.org/10.1016/j.jclepro.2021.128104

  • Hummel M A, Berry MS, Stacey MT (2018) Sea level rise impacts on wastewater treatment systems along the U.S. coasts. Earths Future 6(4):622–633. https://doi.org/10.1002/2017ef000805

  • Hutton G, Haller L, Bartram J (2007) Global cost-benefit analysis of water supply and sanitation interventions. J Water Health 5(4):481–502. https://doi.org/10.2166/wh.2007.009

    Article  Google Scholar 

  • Jaskulak M, Sotomski M, Michalska M, Marks R, Zorena K (2022) The effects of wastewater treatment plant failure on the Gulf of Gdansk (southern Baltic Sea). Int J Environ Res Public Health 19(4):2048. https://doi.org/10.3390/ijerph19042048

  • Kamble SJ, Singh A, Kharat MG (2017) A hybrid life cycle assessment based fuzzy multi-criteria decision making approach for evaluation and selection of an appropriate municipal wastewater treatment technology. Euro-Mediterr J Environ Integr 2(1). https://doi.org/10.1007/s41207-017-0019-8

  • Karamouz M, Farzaneh H (2020) Margin of safety based flood reliability evaluation of wastewater treatment plants: part 2—quantification of reliability attributes. Water Resour Manag 34(6):2043–2059. https://doi.org/10.1007/s11269-020-02543-2

  • Karamouz M, Rasoulnia E, Zahmatkesh Z, Olyaei MA, Baghvand A (2016) Uncertainty-based flood resiliency evaluation of wastewater treatment plants. J Hydroinf 18(6):990–1006. https://doi.org/10.2166/hydro.2016.084

    Article  Google Scholar 

  • Ksibi M, Khadhraoui M, Kallel A, Aloulou F, Guargouri I, Daoud A, ZairiM KM, Elleuch B, Dhia HB (2022) Urban environmental issues in the metropolitan area of Sfax City, Tunisia: could an integrated management solve the problem? Euro-Mediterr J Environ Integr 7(1):29–48. https://doi.org/10.1007/s41207-022-00295-6

  • Liang X, Yue X (2021) Challenges facing the management of wastewater treatment systems in Chinese rural areas. Water Sci Technol 84(6):1518–1526. https://doi.org/10.2166/wst.2021.332

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multiple-criteria decision analysis. Wiley, New York

    Google Scholar 

  • Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4(1):5–22. https://doi.org/10.1111/1467-9671.00035

  • Mansouri Z, Hafezi MN, Dahrazma B (2013) Wastewater treatment plant site selection using AHP and GIS: a case study in Falavarjan. Esfahan Geopersia 3(2):63–72

    Google Scholar 

  • Mardani A, Jusoh A, Nor K, Khalifah Z, Zakwan N, Valipour A (2015) Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ Res–Ekon Istraž 28(1):516–571. https://doi.org/10.1080/1331677x.2015.1075139

  • Metcalf E, Abu-Orf M, Bowden G, Burton FL, Pfrang W, Stensel HD, et al. (2014) Wastewater engineering: treatment and resource recovery. McGraw Hill Education, New York

  • Ministère de l'Environnement et des Energies Renouvelables (MEER) (2022) Les rejets liquides urbains (urban liquid effluents). https://www.me.gov.dz/fr/environnement-urbain/rejet/ Accessed 26 Sept 2022 (In French)

  • Ministère des Ressources en Eau (MRE) (2009) Partie 1: Inventaire de la PMH. Rapport définitif RA3 Wilaya de Laghouat. (Part 1: Inventory of Small and Medium Hydraulics. Final report.) Direction de l’hydraulique agricole. Ministère des Ressources en Eau, Algiers (in French)

  • Ministère des Ressources en Eau (MRE) (2010) Study on updating the national water plan. Programme MEDA de l’Union Européenne. Groupement SOFRECO—Grontmij/Carl Bro—Progress—OIEau. Ministère des Ressources en Eau, Algiers (in French)

  • Ministère des Ressources en Eau (MRE) (2014) Plan national de l’eau (National water plan). Ministère des Ressources en Eau, Algiers (in French)

  • Nielsen J (2018) Tips for flood-proofing wastewater treatment plants. https://atsinnovawatertreatment.com/blog/flood-proof-wastewater-treatment-plant/. Accessed 26 Sept 2022 (in French)

  • Nigusse AG, Adhaneom UG, Kahsay GH, Abrha AM, Gebre DN, Weldearegay AG (2020) GIS application for urban domestic wastewater treatment site selection in the Northern Ethiopia, Tigray Regional State: a case study in Mekelle City. Arab J Geosci 13(8). https://doi.org/10.1007/s12517-020-5257-4

  • Ogato GS, Bantider A, Abebe K, Geneletti D (2020) Geographic information system (GIS)-based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West Shoa Zone, Oromia Regional State, Ethiopia. J Hydrol Reg Stud 27:100659. https://doi.org/10.1016/j.ejrh.2019.100659

  • ONA (2017) Compte rendu STEP Laghouat. Office National de l’Assainissement, Zone de Laghouat, Algiers (in French)

  • Othman AA, Obaid AK, Al-Manmi DAM, Pirouei M, Salar SG, Liesenberg V et al (2021) Insights for landfill site selection using GIS: a case study in the Tanjero River Basin, Kurdistan Region, Iraq. Sustainability 13(22):12602. https://doi.org/10.3390/su132212602

  • Outtani F, Addoum B, Mercier E, De Lamotte DF, Andrieux J (1995) Geometry and kinematics of the South Atlas Front. Algeria and Tunisia. Tectonophysics 249(3–4):233–248. https://doi.org/10.1016/0040-1951(95)00022-f

  • PNUD (2019) Algérie—Rapport national volontaire—Progression de la mise en œuvre des ODD. Programme des Nations Unies pour le Développement, Algiers (in French)

  • Qasim SR, Zhu G (2017a) Wastewater treatment and reuse: theory and design examples, volume 1: principles and basic treatment. CRC, Boca Raton

  • Qasim SR, Zhu G (2017b) Wastewater treatment and reuse: theory and design examples, volume 2: post-treatment, reuse, and disposal. CRC, Boca Raton

  • Radwan F, Alazba AA, Mossad A (2018) Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys 67(1):215–229. https://doi.org/10.1007/s11600-018-0233-z

    Article  Google Scholar 

  • Rimba A, Setiawati M, Sambah A, Miura F (2017) Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Sci 1(1):7. https://doi.org/10.3390/urbansci1010007

  • Rodrigo‐Comino J, Keshavarzi A, Senciales‐González JM (2021) Evaluating soil quality status of fluvisols at the regional scale: a multidisciplinary approach crossing multiple variables. River Res Appl. https://doi.org/10.1002/rra.3865

  • Saadaoui L (2022) Al-Nasir Bin Shohra: a village whose residents were forcibly displaced years ago due to floods (video). Echourouk News (YouTube), 15 Mar 2022. https://www.youtube.com/watch?v=UWrZA_IAJGY (In Arabic)

  • Saadoud D, Guettouche MS, Hassani M, Peinado FJM (2017) Modelling wind-erosion risk in the Laghouat region (Algeria) using geomatics approach. Arab J Geosci 10(16). https://doi.org/10.1007/s12517-017-3139-1

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York

  • Scott M, White L, Kuhlicke C, et al. (2013) Living with flood risk/The more we know, the more we know we don’t know: reflections on a decade of planning, flood risk management and false precision/Searching for resilience or building social capacities for flood risks?/Participatory floodplain management: Lessons from Bangladesh/Planning and retrofitting for floods: Insights from Australia/Neighbourhood design considerations in flood risk management/Flood risk management—challenges to the effective implementation of a paradigm shift. Plan Theory Pract 14(1):103–140. https://doi.org/10.1080/14649357.2012.761904

  • Seltzer P, Lasserre A, Grandjean A, Auberty R, Fourey A (1946) Le climat de l'Algérie (Algeria climate). Imprimerie “La Typo-litho” & J. Carbonel, Algiers (in French)

  • Stamboul M (2005) Contribution à l'étude hydrogéologique de l'atlas saharien, l'exemple du djebel amour (Contribution to hydrogeological of Saharan Atlas, a case study of Djebel Amour). Dissertation, University of Oran, Oran (in French)

  • Sun Q, Nazari R, Karimi M, Fahad R, Golam MD, Peters RW (2021) Comprehensive flood risk assessment for wastewater treatment plants under extreme storm events: a case study for New York City, United States. Appl Sci 11(15):6694. https://doi.org/10.3390/app11156694

    Article  Google Scholar 

  • Tadj M (2012) https://goo.gl/maps/d9XT5cmpJoeCk7zx7. Accessed 8 May 2022

  • Taghilou S, Peyda M, Khosravi Y, Mehrasbi MR (2019) Site selection for wastewater treatment plants in rural areas using the analytical hierarchy process and geographical information system. J Hum Environ Health Promot 5(3):137–144. https://doi.org/10.29252/jhehp.5.3.8

  • Terêncio DPS, Varandas SGP, Fonseca AR et al (2021) Integrating ecosystem services into sustainable landscape management: a collaborative approach. Sci Total Environ 794:148538. https://doi.org/10.1016/j.scitotenv.2021.148538

  • Trianni A, Negri M, Cagno E (2021) What factors affect the selection of industrial wastewater treatment configuration? J Environ Manage 285:112099. https://doi.org/10.1016/j.jenvman.2021.112099

    Article  Google Scholar 

  • Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study. Appl Optim. https://doi.org/10.1007/978-1-4757-3157-6

  • Tropp H, Jagerskog A (2006) Water scarcity challenges in the Middle East and North Africa (MENA). Human Development Paper. UNDP, New York

  • Vergeer S (2017) Flood risk adaptation measures on the wastewater system: a comparison between the Netherlands, Germany and the United States. Doctoral dissertation. University of Groningen, Groningen

  • Wastewater Committee of the Great Lakes—Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers (2014) Recommended standards for wastewater facilities: policies for the design, review, and approval of plans and specifications for wastewater collection and treatment facilities. Health Research Inc., Albany

  • World Bank (2017) Water security in the Middle East and North Africa. https://doi.org/10.1596/978-1-4648-1144-9

    Article  Google Scholar 

  • World Bank (2002) Algeria National Environmental Action Plan for Sustainable Development. Staff sector assessment note, June 28, 2002. Report no. 22890-AL. Rural Development, Water and Environment Department, Middle East and North Africa Region, World Bank, Washington, DC

Download references

Acknowledgements

The authors would like to acknowledge the Laghouat National Agency for Sanitation for their help and cooperation in supplying the data for this study. The authors also thank all who participated in the survey for weighing criteria impacting WWTP site selection. The authors would also like to extend our thanks to anonymous reviewers who provided valuable insights and suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Hamlat.

Additional information

Responsible Editor: Mohamed Ksibi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamlat, A., Kadri, C.B., Sekkoum, M. et al. Multi-criteria decision-making approach for selecting an alternative wastewater treatment plant site in urban areas of Laghouat (North-Central Algeria). Euro-Mediterr J Environ Integr 7, 511–530 (2022). https://doi.org/10.1007/s41207-022-00333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-022-00333-3

Keywords

Navigation