Skip to main content
Log in

Using temperature to predict the end of flowering in the common grape (Vitis vinifera) in the Macerata wine region, Italy

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

The growth of the grapevine is determined largely by temperature, thus it is essential to investigate the role of temperature in crop phenology. This study takes into account three diverse cultivars of grapevine never studied phenologically in this area, on three farms in the province of Macerata (Central Italy, east side).The end of flowering date was chosen for the significance of the growth transition from the plant to the berries. Preventive climate analysis was implemented by GIS software through the cokriging geostatistical method to spatialize temperature, using altitude as the independent variable. The phenological dates of the cultivars of grapevine were related to temperatures iteratively, creating a new method for calculating growing degree days, on the basis of 4 key (cardinal) temperatures which influence plant growth. This study represents the first step towards creating an identity card for the three studied grapevines, as a tool to improve quality and quantity of yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JC (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396

    Article  Google Scholar 

  • Bradley E (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 78(382):316–331

    Article  Google Scholar 

  • Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea Sitchensis. J Appl Ecol 20:951–963

    Article  Google Scholar 

  • Cesaraccio C, Spano D, Snyder RL, Ducea P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric Forest Meteorol 126:1–13

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in literature. Geosci Model Dev 7:1247–1250

    Article  Google Scholar 

  • Cola G, Mariani L, Parisi S, Failla O (2010) Tempo termico e fenologiadellavite. Acta italus hortus 3:31–34, Trento

  • Cola G, Failla O, Maghradze D, Megrelidze L, Mariani L (2017) Grapevine phenology and climate change in Georgia. Int J Biometeorol 61:761–773

    Article  Google Scholar 

  • De Réaumur (1738) Observations du thermomètre, Faites à Paris pendant l’année M.DCCXXXV. Comparées avec celles qui ont été faites sous la Ligne; à l’Isle de France, à Alger, & en quelques-unes de nos Isles de l’Amérique. Histoire de 11 l’Académie Royale des Sciences. Année M.DCCXXXV. A Paris, de l’Imprimerie Royale, pp 545–576

  • Felber R, Stoeckli S, Calanca P (2018) Generic calibration of a simple model of diurnal temperature variations for spatial analysis of accumulated degree-days. Int J Biometeorol 62(4):621–630

    Article  Google Scholar 

  • Ferrise R, Trombi G, Moriondo M, Bindi M (2016) Climate change and grapevines: a simulation study for the Mediterranean Basin. J Wine Econ 11(1):88–104

    Article  Google Scholar 

  • Fila G, Di Lena B, Gardiman M, Storchi P, Tomasi D, Silvestroni O, Pitacco A (2014) Calibration and validation of grapevine budburst models using growth-room experiments as data source. Agric Forest Meteorol 160:69–79

    Article  Google Scholar 

  • Fraga H, Santos JA, Moutinho-Pereira J, Carlos C, Silvestre J, Eiras-Dias J, Malheiro AC (2016) Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J Agric Sci 154(5):795–811

    Article  Google Scholar 

  • Gentilucci M, Bisci C, Burt P, Fazzini M, Vaccaro C. (2018) Interpolation of Rainfall Through Polynomial Regression in the Marche Region (Central Italy). In Lecture Notes in Geoinformation and Cartography; Mansourian, A., Pilesjö, P., Harrie, L., van Lammeren, R. Eds.; Geospatial Technologies for All. AGILE 2018; Springer, Cham (ZG) Switzerland

  • Greene W (1997) Econometric Analysis, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Hänninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica no. 213 article id 7660. https://doi.org/10.14214/aff.7660

  • Ishida T, Kawashima S (1993) Use cokriging to estimate surface air temperature from elevation. Theoret Appl Climatol 3:147–157

    Article  Google Scholar 

  • Johnston K, VerHoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst, vol 380. Esri, Redlands

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73(3):319–343

    Article  Google Scholar 

  • Lorenz DH, Eichhorn KW, Bleiholder H, Klose R, Meier U, Weber E. (1995) Growth stages of the grapevine: phenological growth stages of the grapevine (Vitisvinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust J Grape Wine Res 1(2):100–103

  • McMaster Gregory S, Wilhelm WW (1997) Growing degree-days: one equation, two interpretations. Agric Forest Meteorol 87:291–300

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Chmielewski FM (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12(10):1969–1976

    Article  Google Scholar 

  • Parker AK (2012) Modelling phenology and maturation of the grapevine Vitisvinifera L.: varietal differences and the role of leaf area to fruit weight ratio manipulations, Lincoln University, Phd Thesis

  • Parker AK, De Cortázar-Atauri IG, Van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitisvinifera L. Aust J Grape Wine Res 17:206–216

    Article  Google Scholar 

  • Parker AK, de Cortázar-Atauri IG, Chuine I, Barbeau G, Bois B, Boursiquot JM, Jean-Yves Cahurel JY, Claverie M, Dufourcq T, Gény L, Guimberteau G, Hofmann RW, Jacquet O, Lacombe T, Monamy C, Ojedas H, Panigait L, Payan JC, Rodriquez Lovelle B, Rouchaud E, Schneider C, Spring JL, Storchi P, Tomasi D (2013) Classification of cultivars for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitisvinifera L. Agric Forest Meteorol 180:249–264

    Article  Google Scholar 

  • Renaud O, Victoria-Feser MP (2010) A robust coefficient of determination for regression. J Stat Plan Inference 140(7):1852–1862

    Article  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortScience 9:331–332

    Google Scholar 

  • Robinson TP, Metternicht G (2006) Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric 50(2):97–108

    Article  Google Scholar 

  • Roltsch WJ, Zalom FG, Strawn AJ, Strand JF, Pitcairn MJ (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42(4):169–176

    Article  Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101

    Google Scholar 

  • Stocchi P, Davolio S (2017) Intense air-sea exchanges and heavy orographic precipitation over Italy: the role of Adriatic Sea surface temperature uncertainty. Atmos Res 196:62–82

    Article  Google Scholar 

  • Tao L, Hao X, Kang S (2016) Spatial variability of grapevine bud burst percentage and its association with soil properties at field scale. Ed. Matthew Fidelibus. PLoS ONE 11.10: e0165738. PMC.Web. 14 Jan. 2018

  • Wang H, Liu G, Gong P (2005) Use of cokriging to improve estimates of soil salt solute spatial distribution in the Yellow River delta. Acta Geogr Sin 60(3):511–518

    Google Scholar 

  • Waters N (2017) Tobler's first law of geography. Int Encyclop Geogr People Earth Environ Technol. https://doi.org/10.1002/9781118786352.wbieg1011

    Article  Google Scholar 

  • Weikai Y, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614

    Article  Google Scholar 

  • WMO (2003) Guidelines on climate metadata and homogenization. WMO-TD No. 1186

  • Zapata D, Salazar-Gutierrez M, Chaves B, Keller M, Hoogenboom G, Enol Vitic AJ (2016) Restricted access predicting key phenological stages for 17 grapevine cultivars (Vitisvinifera L.) January 2017 68:60–72

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Gentilucci.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

This paper has been selected from the 1st Euro-Mediterranean Conference for Environmental Integration, Tunisia 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentilucci, M., Burt, P. Using temperature to predict the end of flowering in the common grape (Vitis vinifera) in the Macerata wine region, Italy. Euro-Mediterr J Environ Integr 3, 38 (2018). https://doi.org/10.1007/s41207-018-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-018-0079-4

Keywords

Navigation