Skip to main content
Log in

Separation of cobalt and nickel by nanofiltration using a FilmTec membrane

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Experiments of cobalt and nickel ions separation have been carried out. The chemical process used was the nanofiltration using Filmtec-NF270 membrane as a filtration membrane, charged negatively, in a total recycling system. The optimization of separation process of Co(II) and Ni(II) chlorides, from their synthetic mixture, was conducted by optimizing one operating parameter at a time. Several parameters, such as hydraulic permeation of membrane, transmembrane pressure, initial concentration of feed solution, and pH of feed solution, were studied. The results showed that under the conditions of moderate pressure, slightly acidic medium of feed phase and at equimolar mixture of metal ions; the retentions were 100 and 91.94% for cobalt and nickel, respectively. The retention of nickel will become total if the quantity of cobalt, in mixture, was six times more concentrated. In fact, the retention of metal ions remained more quantitative when using nitrate ions as counter-ions where the rejections were of 0 and 18% for cobalt and nickel ions, respectively, at a conversion equal to 0.11. The retention of metal ions towards the used membrane was conducted by the Donnan and steric effects. This was confirmed by the form of metal ion species found by speciation software and taken by the transport mechanism by nanofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Permeation of membrane material

C0 :

Feed concentration, mol m−3

Cp :

Permeate concentration, mol m−3

j:

Number of ions by molecule

Jv :

Permeate flux, m s−1

Lp :

Hydraulic permeation of membrane

QA :

Feed flow rate, m3 s−1

QP :

Permeate flow rate, m3 s−1

QR :

Retentate flow rate, m3 s−1

R:

Gas constant, 8.316 J/mol K

S :

Membrane surface, m2

T:

Temperature of solution, K

ΔP:

Transmembrane pressure (TMP), bar

ΔPe :

Effective pressure, bar

Δπ:

Osmotic pressure, bar

ρ:

Density of solvent

σ:

Reflection coefficient of ions

References

  • Afonso MD, Depinhoho MN (2000) Transport of MgSO4, MgCl2, and Na2SO4 across an amphoteric nanofiltration membrane. J Membr Sci 179:137–154

    Article  Google Scholar 

  • Agboola O, Maree J, Mbaya R, Zvinowanda CM, Molelekwa GF, Jullok N, Bruggen BV, Volodine A, Haesendonck CV (2014) Deposition of toxic metal particles on rough nanofiltration membranes. Korean J Chem Eng 31(8):1413–1424

    Article  Google Scholar 

  • Ahmed MT, Taha S, Maachi R, Dorange G (2002) The influence of physico-chemistry on the retention of chromium ions during nanofiltration. Desalination 145:103–108

    Article  Google Scholar 

  • Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17

    Article  Google Scholar 

  • Artu G, Hapke J (2006) Characterization of nanofiltration membranes by their morphology, charge and filtration performance parameters. Desalination 200:178–180

    Article  Google Scholar 

  • Belkhouche N, Didi MA, Taha S, Farès NB (2009) Zinc rejection from leachate solutions of industrial solid waste- effects of pressure and concentration on nanofiltration membrane performance. Desalination 239:58–65

    Article  Google Scholar 

  • Benko K, Pellegrino J, Mason LW, Price K (2006) Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes: apparatus development. J Membr Sci 270(1–2):187–195

    Article  Google Scholar 

  • Ben Frarès N, Taha S, Dorange G (2005) Influence of the operating conditions on the elimination of zinc ions by nanofiltration. Desalination 185:245–253

    Article  Google Scholar 

  • Chaabane T, Taha S, Taleb AM, Maachi R, Dorange G (2006) Removal of copper from industrial effluent using a spiral wound module–film theory and hydrodynamic approach. Desalination 200:403–405

    Article  Google Scholar 

  • Chang F, Liu W, Wang X (2014) Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions. Desalination 334(1):10–16

    Article  Google Scholar 

  • Conlon WJ (1985) Pilot field test data for prototype ultra low pressure reverse osmosis elements. Desalination 56:203–226

    Article  Google Scholar 

  • Dalali N, Yavarizadeh H, Agrawal YK (2012) Separation of zinc and cadmium from nickel and cobalt by facilitated transport through bulk liquid membrane using trioctyl methyl ammonium chloride as carrier. J Ind Eng Chem 18:1001–1005

    Article  Google Scholar 

  • Fatin-Rouge N, Szymczyk A, Ozdemir E, Vidonne A, Fievet P (2006) Retention of single and mixed inorganic electrolytes by a polyamide nanofiltration membrane. Desalination 200:133–134

    Article  Google Scholar 

  • Garba Y, Taha S, Gondrexon N, Dorange G (1999) Ion transport modelling through nanofiltration membranes. J Membr Sci 160:187–200

    Article  Google Scholar 

  • Gega J, Walkowiak W, Gajda B (2001) Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membranes. Sep Purif Technol 22–23:551–558

    Article  Google Scholar 

  • Gherasim CV, Mikulášek P (2014) Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration. Desalination 343:67–74

    Article  Google Scholar 

  • Gherasim CV, Hancková K, Palarčík J, Mikulášek P (2015) Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane. J Membr Sci 490:46–56

    Article  Google Scholar 

  • González-Muñoz MJ, Rodríguez MA, Luque S, Álvarez JR (2006) Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 200:742–744

    Article  Google Scholar 

  • Hartinger L (1994) Handbook of effluent treatment and recycling for the metal finishing industry, 2nd ed., Materials Park, Ohio Edition: ASM International; Stevenage, Herts., UK: Finishing Publications, 1994

  • Huang R, Chen G, Sun M, Gao C (2008) Preparation and characterization of quaterinized chitosan/poly (acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking. Sep Purif Technol 58(3):393–399

    Article  Google Scholar 

  • Hussain AA, Abashar MEE, Al-Mutaz IS (2007) Influence of ion size on the prediction of nanofiltration membrane systems. Desalination 214:150–166

    Article  Google Scholar 

  • Kagramanov GG, Farnosova EN (2012) Effect of solution composition on selectivity of reverse osmosis and nanofiltration membranes. Petrol Chem 52(8):625–630

    Article  Google Scholar 

  • Longquan L, Cheng W, Yadong Li (1997) Separation of cobalt and nickel by emulsion liquid membrane with the use of EDTA as masking reagent. J Membrane Sci 135:173–177

    Article  Google Scholar 

  • Maher A, Sadeghi M, Moheb A (2014) Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination 352:166–173

    Article  Google Scholar 

  • Malik MA, Hashim MA, Nabi F (2012) Extraction of metal ions by ELM separation technology. J Disper Sci Technol 33(3):346–356

    Article  Google Scholar 

  • Mungray AA, Murthy ZVP (2012) Comparative performance study of four nanofiltration membranes in the separation of mercury and chromium. Ionics 18:811–816

    Article  Google Scholar 

  • Nayl AA (2010) Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. J Hazard Mater 173:223–230

    Article  Google Scholar 

  • Nędzarek A, Drost A, Harasimiuk FB, Tórz A (2015) The influence of pH and BSA on the retention of selected heavy metals in the nanofiltration process using ceramic membrane. Desalination 369:62–67

    Article  Google Scholar 

  • Pereira AM, Rooze J, Timmer M, Keurentjes J (2006) An analysis of multi-component mass transfer in solvent nanofiltration. Desalination 199:37–38

    Article  Google Scholar 

  • Petersen RJ (1993) Composite reverse osmosis and nanofiltration membranes. J Membr Sci 83:81–150

    Article  Google Scholar 

  • Phillips CSG, Williams RJP, Hérault V (1971) Chimie minérale. Tome II, Métaux: Maîtrises de chimie et de chimie physique. Edition Dunod, Paris

    Google Scholar 

  • Pontié M, Lhassani A, Diawara CK, Elana A, Innocent C, Aureaua D, Rumeau M, Croue JP, Buisson H, Hemery P (2004) Seawater nanofiltration for the elaboration of usable salty waters. Desalination 167:347–355

    Article  Google Scholar 

  • Rautenbach R, Gröschl A (1990) Separation potential of nanofiltration membranes. Desalination 77:73–84

    Article  Google Scholar 

  • Ricci BC, Ferreira CD, Aguiar AO, Amaral MCS (2015) Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Sep Purif Technol 154:11–21

    Article  Google Scholar 

  • Schaep J, Vandescasteele C, Mohammad AW, Bowen WR (2001) Modelling the retention of ionic components for different nanofiltration membranes. Sep Purif Technol 22(23):169–179

    Article  Google Scholar 

  • Skluzacek JM, Tejedor MI, Anderson MA (2007) NaCl rejection by an inorganic nanofiltration membrane in relation to its central pore potential. J Membr Sci 289:32–39

    Article  Google Scholar 

  • Surucu A, Eyupoglu V, Tutkun O (2012) Selective separation of cobalt and nickel by flat sheet supported liquid membrane using Alamine 300 as carrier. J Ind Eng Chem 18:629–634

    Article  Google Scholar 

  • Szymczyk A, Fievet P, Ramseyer C (2006) Dielectric constant of electrolyte solutions confined in a charged nanofiltration membrane. Desalination 200:125–126

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Program of Research and the Laboratory of Separation and Purification Technologies–Tlemcen, Algeria, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasr-Eddine Belkhouche.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Appendix

Appendix

All data from tests performed by Saehan Industries, Inc- Seoul–Korea.

Zeta potential: calculated by streaming potential measurements

Electrolyte: NaCl

0.3 mM

1.5 mM

3.0 mM

pH

Zeta pot. (mV)

pH

Zeta pot. (mV)

PH

Zeta pot. (mV)

5.13

− 8.7

5.33

− 21

5.43

− 22.7

5.15

− 10.6

5.34

− 24.2

5.44

− 26.3

4.27

− 6.4

4.27

− 12.6

4.36

− 13.8

4.29

− 8.5

4.28

− 15.8

4.37

− 17.4

6.16

− 11.8

6.14

− 22.2

6.13

− 23.6

6.17

− 13.5

6.14

− 26.8

6.14

− 27.5

8.1

− 14.8

8.19

− 26.4

7.91

− 27.3

8.11

− 16.6

8.17

− 30.2

7.9

− 30.9

9.48

− 19.9

9.62

− 28.5

9.63

− 28.6

9.51

− 21.9

9.62

− 33.2

9.63

− 34

Contact angle sessile drop method

N°

Contact angle (°)

1

33.5

2

25.7

3

30.5

4

37.5

5

30.2

6

28.8

7

34.1

8

32.1

9

27.2

10

35.2

Average

31.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkhouche, NE., Merad, N.S., Mesli, M. et al. Separation of cobalt and nickel by nanofiltration using a FilmTec membrane. Euro-Mediterr J Environ Integr 3, 12 (2018). https://doi.org/10.1007/s41207-018-0051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-018-0051-3

Keywords

Navigation