Skip to main content
Log in

Advancements in nanocomposites for wastewater treatment addressing emerging pollutants and contaminants

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

The presence of emerging contaminants in wastewater, including pharmaceuticals, personal care products, and heavy metals, poses significant risks to human and ecological health. Conventional water treatment methods are often inadequate for removing these pollutants. Nanotechnology provides promising solutions through the development of multifunctional nanocomposite adsorbents and catalysts. This review summarizes recent progress on diverse nanocomposites synthesized for removing contaminants from water. Both inorganic nanomaterials (carbon nanotubes, metal oxides, quantum dots) and organic nanomaterials (chitosan, polymers) have been incorporated into nanocomposites to enhance absorption capacity, catalytic degradation, and antimicrobial capabilities. Specific examples are presented for nanocomposites containing carbon, boron nitride, metals, metal oxides, and biopolymers. Although challenges remain regarding practical implementation, nanocomposites have demonstrated considerable potential as next-generation technologies for water purification and treatment of complex emerging pollutants. Continued research on nanocomposite fabrication, characterization, and real-world feasibility is still needed to realize the goal of clean, safe water for all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kühne R, Ebert R-U, Ginebreda A, De Cooman W, Schüürmann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European water framework directive. Sci Total Environ 409:2064–2077

    Article  PubMed  ADS  Google Scholar 

  2. Olasupo A, Suah FBM (2021) Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: a case of polymer inclusion membranes. J Hazard Mater 406:124317

    Article  CAS  PubMed  Google Scholar 

  3. Chowdhury S, Rodriguez MJ, Sadiq R (2011) Disinfection byproducts in Canadian provinces: associated cancer risks and medical expenses. J Hazard Mater 187:574–584

    Article  CAS  PubMed  Google Scholar 

  4. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment, TrAC. Trends Anal Chem 30:517–527

    Article  Google Scholar 

  5. Ter Laak TL, Agbo SO, Barendregt A, Hermens JLM (2006) Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests. Environ Sci Technol 40:1307–1313

    Article  PubMed  ADS  Google Scholar 

  6. Geissen V, Ramos FQ, de Bastidas-Bastidas J, P., Díaz-González, G., Bello-Mendoza, R., Huerta-Lwanga, E., & Ruiz-Suárez, L. E. (2010) Soil and water pollution in a banana production region in tropical Mexico. Bull Environ Contam Toxicol 85:407–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie Q, Chen J, Zhao H, Qiao X, Cai X, Li X (2013) Different photolysis kinetics and photooxidation reactivities of neutral and anionic hydroxylated polybrominated diphenyl ethers. Chemosphere 90:188–194

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Bradley PM, Barber LB, Kolpin DW, McMahon PB, Chapelle FH (2008) Potential for 4-n-nonylphenol biodegradation in stream sediments, Environ. Toxicol. Chem. Int J 27:260–265

    CAS  Google Scholar 

  9. Liang Y, Bradford SA, Simunek J, Heggen M, Vereecken H, Klumpp E (2013) Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environ Sci Technol 47:12229–12237

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Tawalbeh M, Al Mojjly A, Al-Othman A, Hilal N (2018) Membrane separation as a pre-treatment process for oily saline water. Desalination 447:182–202

    Article  CAS  Google Scholar 

  11. Almomani F, Al Ketife A, Judd S, Shurair M, Bhosale RR, Znad H, Tawalbeh M (2019) Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ 662:662–671

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Al-Qodah Z, Tawalbeh M, Al-Shannag M, Al-Anber Z, Bani-Melhem K (2020) Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: a state-of-the-art review. Sci Total Environ 744:140806

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Al-Bsoul A, Al-Shannag M, Tawalbeh M, Al-Taani AA, Lafi WK, Al-Othman A, Alsheyab M (2020) Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Sci Total Environ 700:134576

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Wu J, Wang T, Wang J, Zhang Y, Pan W-P (2021) A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci Total Environ 754:142150

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Tapia-Orozco N, Ibarra-Cabrera R, Tecante A, Gimeno M, Parra R, Garcia-Arrazola R (2016) Removal strategies for endocrine disrupting chemicals using cellulose-based materials as adsorbents: a review. J Environ Chem Eng 4:3122–3142

    Article  CAS  Google Scholar 

  16. Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003

    Article  CAS  PubMed  Google Scholar 

  17. de Andrade JR, Oliveira MF, da Silva MGC, Vieira MGA (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57:3103–3127

    Article  Google Scholar 

  18. De Souza FM, Lazarin AM, Vieira MGA, Dos Santos OAA (2018) Kinetic, equilibrium, and thermodynamic study on atrazine adsorption in organophilic clay, Desalin. Water Treat 123:240–252

    Google Scholar 

  19. Ajith MP, Aswathi M, Priyadarshini E, Rajamani P (2021) Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresour Technol 342:126000. https://doi.org/10.1016/j.biortech.2021.126000

    Article  CAS  PubMed  Google Scholar 

  20. Rojas S, Horcajada P (2020) Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem Rev 120:8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797

    Article  CAS  PubMed  Google Scholar 

  21. Bhattu M, Singh J (2023) Recent advances in nanomaterials based sustainable approaches for mitigation of emerging organic pollutants. Chemosphere 321:138072. https://doi.org/10.1016/j.chemosphere.2023.138072

    Article  CAS  PubMed  Google Scholar 

  22. Musa N, Allam BK, Singh NB, Banerjee S (2023) Investigation on water defluoridation via batch and continuous mode using Ce–Al bimetallic oxide: Adsorption dynamics, electrochemical and LCA analysis. Environ Pollut 328:121639. https://doi.org/10.1016/j.envpol.2023.121639

    Article  CAS  PubMed  Google Scholar 

  23. Lawal Usman U, Kumar Allam B, Bahadur Singh N, Banerjee S (2022) Adsorptive removal of Cr(VI) from wastewater by hexagonal boron nitride-magnetite nanocomposites: Kinetics, mechanism and LCA analysis. J Mol Liq 354:118833. https://doi.org/10.1016/j.molliq.2022.118833

    Article  CAS  Google Scholar 

  24. Khodakarami M, Bagheri M (2021) Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J Clean Prod 296:126404

    Article  CAS  Google Scholar 

  25. Mishra AK (2014) Nanocomposites in wastewater treatment, CRC press

  26. Tontsa L, Temgoua E, Bertrand G, Kengni L, Makaya Mvoubou MC, Njueya Kopa A, Mba FF (2023) Environmental factors controlling contamination of alternative water supply points in the Lefock semi-urban watershed, Cameroon Western Highlands. Environ Earth Sci 82:17. https://doi.org/10.1007/s12665-022-10699-w

    Article  CAS  ADS  Google Scholar 

  27. Cevallos-Mendoza J, Amorim C, Rodríguez-Díaz J, Montenegro M (2022) Removal of contaminants from water by membrane filtration: a review. Membranes 12:570. https://doi.org/10.3390/membranes12060570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495. https://doi.org/10.3390/w12020495

    Article  CAS  Google Scholar 

  29. Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7:1–14. https://doi.org/10.1007/s40097-017-0219-4

    Article  CAS  Google Scholar 

  30. Attia TMS, Hu XL (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93:2076–2085

    Article  ADS  Google Scholar 

  31. Gupta VK, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf ASH, Goodarzi M, Garshasbi A (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: a review. Crit Rev Environ Sci Technol 46:93–118

    Article  CAS  Google Scholar 

  32. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4): MR17–MR71

  33. Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  34. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  PubMed  Google Scholar 

  35. Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanoparticle Res 7:331–342

    Article  CAS  ADS  Google Scholar 

  36. Zito P, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. Rsc Adv 5:29885–29907

    Article  ADS  Google Scholar 

  37. Fernández-Pacheco R, Arruebo M, Marquina C, Ibarra R, Arbiol J, Santamaría J (2006) Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method. Nanotechnology 17:1188

    Article  ADS  Google Scholar 

  38. Yang K, Xing B (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537

    Article  CAS  PubMed  Google Scholar 

  39. Dhillon A, Kumar D (2019) New generation nano-based adsorbents for water purification. In: Nanoscale Materials in Water Purification (pp 783–798). Elsevier. https://doi.org/10.1016/B978-0-12-813926-4.00036-7

  40. Awasthi A, Jadhao P, Kumari K (2019) Clay nano-adsorbent: structures, applications and mechanism for water treatment. SN Appl Sci 1:1076. https://doi.org/10.1007/s42452-019-0858-9

    Article  CAS  Google Scholar 

  41. Reymond JP, Kolenda F (1999) Estimation of the point of zero charge of simple and mixed oxides by mass titration. Powder Technol 103:30–36

    Article  CAS  Google Scholar 

  42. Nandi BK, Goswami A, Purkait MK (2009) Adsorption characteristics of brilliant green dye on kaolin. J Hazard Mater 161:387–395

    Article  CAS  PubMed  Google Scholar 

  43. Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res 43:2419–2430

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Gholamirad F, Yu M, Park CM, Jang A, Jang M, Taheri-Qazvini N, Yoon Y (2021) Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J 406:126789

    Article  CAS  Google Scholar 

  45. Masjoudi M, Golgoli M, Nejad ZG, Sadeghzadeh S, Borghei SM (2021) Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere 263:128043

    Article  CAS  PubMed  Google Scholar 

  46. Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH (2019) Fixed bed adsorption column studies and models for removal of ibuprofen from aqueous solution by strong adsorbent Nano-clay composite. J Environ Health Sci Eng 17:753–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH (2016) Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J Mol Liq 224:832–841

    Article  CAS  Google Scholar 

  48. Mohammadi L, Rahdar A, Khaksefidi R, Ghamkhari A, Fytianos G, Kyzas GZ (2020) Polystyrene magnetic nanocomposites as antibiotic adsorbents. Polymers 12:1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoon SU, Mahanty B, Kim CG (2017) Adsorptive removal of carbamazepine and diatrizoate in iron oxide nanoparticles amended sand column mimicing managed aquifer recharge. Water 9:250

    Article  Google Scholar 

  50. D’Cruz B, Madkour M, Amin MO, Al-Hetlani E (2020) Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater Chem Phys 240:122109

    Article  Google Scholar 

  51. Li S, Liu S, Huang F, Lin S, Zhang H, Cao S, Chen L, He Z, Lutes R, Yang J (2018) Preparation and characterization of cellulose-based nanofiltration membranes by interfacial polymerization with piperazine and trimesoyl chloride. ACS Sustain Chem Eng 6:13168–13176

    Article  CAS  Google Scholar 

  52. Varadavenkatesan T, Lyubchik E, Pai S, Pugazhendhi A, Vinayagam R, Selvaraj R (2019) Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J Photochem Photobiol B 199:111621

    Article  CAS  PubMed  Google Scholar 

  53. Zaheer Z (2018) Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. J Photochem Photobiol B 178:584–592

    Article  CAS  PubMed  Google Scholar 

  54. Debnath B, Majumdar M, Bhowmik M, Bhowmik KL, Debnath A, Roy DN (2020) The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J Environ Manage 261:110235

    Article  CAS  PubMed  Google Scholar 

  55. Rasheed T, Bilal M, Hassan AA, Nabeel F, Bharagava RN, Ferreira LFR, Tran HN, Iqbal HMN (2020) Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res 185:109436

    Article  CAS  PubMed  Google Scholar 

  56. Sarkar S, Das R (2017) PVP capped silver nanocubes assisted removal of glyphosate from water—a photoluminescence study. J Hazard Mater 339:54–62

    Article  CAS  PubMed  Google Scholar 

  57. Shu X, Yang Q, Yao F, Zhong Y, Ren W, Chen F, Sun J, Ma Y, Fu Z, Wang D (2019) Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chem Eng J 358:903–911

    Article  CAS  Google Scholar 

  58. El-Hout SI, El-Sheikh SM, Hassan HMA, Harraz FA, Ibrahim IA, El-Sharkawy EA (2015) A green chemical route for synthesis of graphene supported palladium nanoparticles: a highly active and recyclable catalyst for reduction of nitrobenzene. Appl Catal Gen 503:176–185

    Article  CAS  Google Scholar 

  59. Hassani A, Khataee A, Karaca S, Karaca C, Gholami P (2017) Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason Sonochem 35:251–262

    Article  CAS  PubMed  Google Scholar 

  60. Fakhri A, Behrouz S (2015) Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol Energy 112:163–168

    Article  CAS  ADS  Google Scholar 

  61. Eslami A, Amini MM, Yazdanbakhsh AR, Mohseni-Bandpei A, Safari AA, Asadi A (2016) N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J Chem Technol Biotechnol 91:2693–2704

    Article  CAS  Google Scholar 

  62. Malakootian M, Pourshaban-Mazandarani M, Hossaini H, Ehrampoush MH (2016) Preparation and characterization of TiO2 incorporated 13X molecular sieves for photocatalytic removal of acetaminophen from aqueous solutions. Process Saf Environ Prot 104:334–345

    Article  CAS  Google Scholar 

  63. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M (2015) Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J Mol Liq 211:431–441

    Article  CAS  Google Scholar 

  64. Nadejde C, Neamtu M, Hodoroaba V-D, Schneider RJ, Paul A, Ababei G, Panne U (2015) Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Appl Catal B Environ 176:667–677

    Article  Google Scholar 

  65. Wang Y, Sun H, Ang HM, Tadé MO, Wang S (2014) Facile synthesis of hierarchically structured magnetic MnO2/ZnFe2O4 hybrid materials and their performance in heterogeneous activation of peroxymonosulfate. ACS Appl Mater Interfaces 6:19914–19923

    Article  CAS  PubMed  Google Scholar 

  66. Kim S, Park CM, Jang M, Son A, Her N, Yu M, Snyder S, Kim D-H, Yoon Y (2018) Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemosphere 212:1104–1124

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Jeon M, Jun B-M, Kim S, Jang M, Park CM, Snyder SA, Yoon Y (2020) A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 261:127781

    Article  CAS  PubMed  Google Scholar 

  68. Othman A, Vargo P, Andreescu S (2019) Recyclable adsorbents based on ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters. ACS Appl Nano Mater 2:7008–7018

    Article  CAS  Google Scholar 

  69. Li S, Zhang X, Huang Y (2017) Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater 321:711–719

    Article  CAS  PubMed  Google Scholar 

  70. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents in aqueous solutions. Chem Phys Carbon pp 227–406

  71. Villacañas F, Pereira MFR, Órfão JJM, Figueiredo JL (2006) Adsorption of simple aromatic compounds on activated carbons. J Colloid Interface Sci 293:128–136

    Article  PubMed  ADS  Google Scholar 

  72. Wei H, Deng S, Huang Q, Nie Y, Wang B, Huang J, Yu G (2013) Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res 47:4139–4147

    Article  CAS  PubMed  Google Scholar 

  73. Rasheed T, Adeel M, Nabeel F, Bilal M, Iqbal HMN (2019) TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. Sci Total Environ 688:299–311

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Yu S, Wang X, Pang H, Zhang R, Song W, Fu D, Hayat T, Wang X (2018) Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem Eng J 333:343–360

    Article  CAS  Google Scholar 

  75. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Chen D, Zhu H, Yang S, Li N, Xu Q, Li H, He J, Lu J (2016) Micro–nanocomposites in environmental management. Adv Mater 28:10443–10458

    Article  CAS  PubMed  Google Scholar 

  77. Lei W, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1–7

    Article  Google Scholar 

  78. Yu Y, Chen H, Liu Y, Craig VSJ, Wang C, Li LH, Chen Y (2015) Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Adv Mater Interfaces 2:1400267

    Article  Google Scholar 

  79. Bai W, Wang B, Yang S, Yan S, Cao C, Zhou Z, Ji J, Guo K, Tang C (2022) Adsorption and removal of antibiotic pollutants using CuO−Co3O4 Co–modified porous boron nitride fibers in aqueous solution. ChemPlusChem 87:e202200290

    Article  CAS  PubMed  Google Scholar 

  80. Agarwal S, Sadeghi N, Tyagi I, Gupta VK, Fakhri A (2016) Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J Colloid Interface Sci 478:430–438

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Manna S, Bhattacharya S, Sengupta S, Das P (2018) Synthesis of graphene oxide dots coated biomatrices and its application for the removal of multiple pollutants present in wastewater. J Clean Prod 203:83–88

    Article  CAS  Google Scholar 

  82. Yan Z, Qu X, Niu Q, Tian C, Fan C, Ye B (2016) A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury (II) ions and biothiols. Anal Methods 8:1565–1571

    Article  CAS  Google Scholar 

  83. Deng Y, Tang L, Feng C, Zeng G, Wang J, Lu Y, Liu Y, Yu J, Chen S, Zhou Y (2017) Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight. ACS Appl Mater Interfaces 9:42816–42828

    Article  CAS  PubMed  Google Scholar 

  84. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684

    Article  CAS  Google Scholar 

  85. Kumar S, Dhiman A, Sudhagar P, Krishnan V (2018) ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Appl Surf Sci 447:802–815

    Article  CAS  ADS  Google Scholar 

  86. Nie Y-C, Yu F, Wang L-C, Xing Q-J, Liu X, Pei Y, Zou J-P, Dai W-L, Li Y, Suib SL (2018) Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn–N–TiO2/g–C3N4 composite catalysts: performance and mechanism. Appl Catal B Environ 227:312–321

    Article  CAS  Google Scholar 

  87. Lei Z, Wang J, Wang L, Yang X, Xu G, Tang L (2016) Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J Hazard Mater 312:298–306

    Article  CAS  PubMed  Google Scholar 

  88. Yao Q, Wang S, Shi W, Lu C, Liu G (2017) Graphene quantum dots in two-dimensional confined and hydrophobic space for enhanced adsorption of nonionic organic adsorbates. Ind Eng Chem Res 56:583–590

    Article  CAS  Google Scholar 

  89. Adeola AO, Nomngongo PN (2022) Advanced polymeric nanocomposites for water treatment applications: a holistic perspective. Polymers 14:2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chung DD (2003) Composite materials: functional materials for modern technologies. Springer Sci Bus Med

  91. Subasinghe A, Das R, Bhattacharyya D (2016) Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. Int J Smart Nano Mater 7:202–220

    Article  CAS  Google Scholar 

  92. Smith R (2005) Biodegradable polymers for industrial applications, CRC press

  93. Moradi O, Sharma G (2021) Emerging novel polymeric adsorbents for removing dyes from wastewater: a comprehensive review and comparison with other adsorbents. Environ Res 201:111534

    Article  CAS  PubMed  Google Scholar 

  94. Beyene HD, Ambaye TG (2019) Application of sustainable nanocomposites for water purification process. Sustain Polymer Compos Nanocomposites pp 387–412

  95. Alam TE (2012) Metal oxide graphene nanocomposites for organic and heavy metal remediation

  96. Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manage 231:622–634

    Article  CAS  PubMed  Google Scholar 

  97. Pirsa S, Asadzadeh F, Karimi Sani I (2020) Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. J Inorg. Organomet. Polym. Mater. 30:3188–3198

    Article  CAS  Google Scholar 

  98. Yi J, Li Y, Yang L, Zhang L-M (2019) Kinetics and thermodynamics of adsorption of Cu2+ and methylene blue to casein hydrogels. J Polym Res 26:1–14

    Article  Google Scholar 

  99. Li Z, Bai T, Dai L, Wang F, Tao J, Meng S, Hu Y, Wang S, Hu S (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:1–8

    Google Scholar 

  100. Ren J, Wang X, Zhao L, Li M, Yang W (2021) Effective removal of dyes from aqueous solutions by a gelatin hydrogel. J Polym Environ 29:3497–3508

    Article  CAS  Google Scholar 

  101. Saber-Samandari S, Saber-Samandari S, Joneidi-Yekta H, Mohseni M (2017) Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube. Chem Eng J 308:1133–1144

    Article  CAS  Google Scholar 

  102. Nejaei A, Rahmanifar B, Maleki AE, Gazani ZN (2017) Collagen-based CuO nanoparticles: a new adsorbent for removal of cypermethrin from water. Fresenius Environ Bull 26:2738–2745

    Google Scholar 

  103. Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Wang L, Qiu H (2013) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu (II) adsorption. Carbohydr Polym 98:736–743

    Article  CAS  PubMed  Google Scholar 

  104. Tang Y, Zhou J, Guo J, Liao X, Shi B (2021) Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater. J Environ Manage 283:112001

    Article  CAS  PubMed  Google Scholar 

  105. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au (III) and Pd (II). Talanta 93:350–357

    Article  CAS  PubMed  Google Scholar 

  106. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromol 10:1429–1435

    Article  CAS  Google Scholar 

  107. Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  108. Nguyen VC, Pho QH (2014) Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive Blue 19 and Ni 2+ ions. Sci World J 2014

  109. Zadaka D, Nir S, Radian A, Mishael YG (2009) Atrazine removal from water by polycation–clay composites: effect of dissolved organic matter and comparison to activated carbon. Water Res 43:677–683

    Article  CAS  PubMed  Google Scholar 

  110. Ramesh S, Kim HS, Kim J-H (2018) Cellulose–polyvinyl alcohol–nano-TiO2 hybrid nanocomposite: thermal, optical, and antimicrobial properties against pathogenic bacteria. Polym-Plast Technol Eng 57:669–681

    Article  CAS  Google Scholar 

  111. Li S-M, Dong Y-Y, Ma M-G, Fu L-H, Sun R-C, Xu F (2013) Hydrothermal synthesis, characterization, and bactericidal activities of hybrid from cellulose and TiO2. Carbohydr Polym 96:15–20

    Article  CAS  PubMed  Google Scholar 

  112. Mahadeva SK, Kim J (2011) Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics. Sci Technol Adv Mater

  113. Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508

    Article  CAS  PubMed  Google Scholar 

  114. Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G (2018) Water resistant cellulose–titanium dioxide composites for photocatalysis. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  115. Pawar RR, Kim M, Kim J-G, Hong S-M, Sawant SY, Lee SM (2018) Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Appl Clay Sci 162:339–350

    Article  CAS  Google Scholar 

  116. A. Olad, F. Farshi Azhar, A study on the adsorption of chromium (VI) from aqueous solutions on the alginate-montmorillonite/polyaniline nanocomposite, Desalination Water Treat. 52 (2014) 2548–2559.

  117. Unuabonah EI, Olu-Owolabi BI, Adebowale KO, Yang LZ (2008) Removal of lead and cadmium ions from aqueous solution by polyvinyl alcohol-modified kaolinite clay: a novel nano-clay adsorbent. Adsorpt Sci Technol 26:383–405

    Article  CAS  Google Scholar 

  118. Wang X, Yang L, Zhang J, Wang C, Li Q (2014) Preparation and characterization of chitosan–poly (vinyl alcohol)/bentonite nanocomposites for adsorption of Hg (II) ions. Chem Eng J 251:404–412

    Article  CAS  Google Scholar 

  119. Omraei M, Esfandian H, Katal R, Ghorbani M (2011) Study of the removal of Zn (II) from aqueous solution using polypyrrole nanocomposite. Desalination 271:248–256

    Article  CAS  Google Scholar 

  120. Moreno-Sader K, García-Padilla A, Realpe A, Acevedo-Morantes M, Soares JBP (2019) Removal of heavy metal water pollutants (Co2+ and Ni2+) using polyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites. ACS Omega 4:10834–10844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang X, Wang X (2015) Adsorption and desorption of nickel (II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS ONE 10:e0117077

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wong LS, Wong CS (2014) A new method for heavy metals and aluminium detection using biopolymer-based optical biosensor. IEEE Sens J 15:471–475

    Article  ADS  Google Scholar 

  123. Sadrolhosseini AR, Noor ASM, Bahrami A, Lim HN, Talib ZA, Mahdi MA (2014) Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique. PLoS ONE 9:e93962

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  124. Tabassum R, Gupta BD (2015) Fiber optic manganese ions sensor using SPR and nanocomposite of ZnO–polypyrrole. Sens Actuators B Chem 220:903–909

    Article  CAS  Google Scholar 

  125. Futalan CM, Kan C-C, Dalida ML, Hsien K-J, Pascua C, Wan M-W (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remya R.R.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R.R, R., Julius, A., T.Y, S. et al. Advancements in nanocomposites for wastewater treatment addressing emerging pollutants and contaminants. Nanotechnol. Environ. Eng. 9, 99–110 (2024). https://doi.org/10.1007/s41204-023-00352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00352-7

Keywords

Navigation