Skip to main content
Log in

Study of bioaerosol disinfection kinetics and application of nonlinear regression modeling for optimization of TiO2-based photocatalytic disinfection process

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

A Correction to this article was published on 08 December 2023

This article has been updated

Abstract

Bacteria and viruses are some of the major sources of indoor air pollution. Many strategies are utilized to control indoor biopollutants. Among the new emerging technologies, this work focuses on the photocatalytic oxidation process and application of disinfection models to optimize the photocatalytic process in bioaerosol control. The kinetics of bioaerosol disinfection was investigated in the photocatalytic process with nonlinear regression analysis for Serratia marcescens and E. coli bacteria. The Chick–Watson model was found suitable and was applied for determination of the inactivation kinetics. The inactivation rate constant k’ was found to be 0.0038 min−1 for S. marcescens and 0.09 min−1 for E. coli. The outcomes showed that in the process of disinfection kinetics of bioaerosols, pseudo-first-order kinetics fits well. With nonlinear regression analysis, a model was developed based on functional parameters such as UV intensity (20 to 100 W/m2), relative humidity (30 to 85%) and air velocity (37 to 112 ft/min) for S. marcescens and TiO2 loading (960 and 1516 mg/m2), UV intensity (0.5 to 3.4 mW/cm2) and relative humidity (51 to 85%) for E. coli. For E. coli overall inactivation was found to increase with an increase in TiO2 loading, RH or UV intensities. The inactivation rate of S. marcescens increased with an increase in UV intensity; however, it was found to decrease at very high or low values of relative humidity and air velocity. Hence, the optimum values for relative velocity were found to be 50% and air velocity of 74 ft/min for S. marcescens. The rate expressions derived for both data can be utilized for predicting and optimizing the disinfection rate at different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Zacarías SM, Pirola S, Manassero A, Visuara ME, Alfano OM, Satuf ML (2019) Photocatalytic inactivation of bioaerosols in a fixed-bed reactor with TiO2-coated glass rings. Photochem Photobiol Sci 18(4):884–890. https://doi.org/10.1039/c8pp00297e

    Article  Google Scholar 

  2. Vohra A, Goswami DY, Deshpande DA, Block SS (2006) Enhanced photocatalytic disinfection of indoor air. Appl Catal B 64(1–2):57–65. https://doi.org/10.1016/j.apcatb.2005.10.025

    Article  Google Scholar 

  3. Lee BU (2011) Life comes from the air: a short review on bioaerosol control. Aerosol Air Qual Res 11(7):921–927. https://doi.org/10.4209/aaqr.2011.06.0081

    Article  Google Scholar 

  4. Sadigh A, Fataei E, Arzanloo M, Imani AA (2021) Bacteria bioaerosol in the indoor air of educational microenvironments: measuring exposures and assessing health effects. J Environ Health Sci Eng 19(2):1635–1642. https://doi.org/10.1007/s40201-021-00719-5

    Article  Google Scholar 

  5. Kowalski W (2005) Aerobiological engineering handbook: airborne disease and control technologies. McGraw Hill Professional

  6. Gautam S, Trivedi U (2020) Global implications of bio-aerosol in pandemic. Environ Dev Sustain 22(5):3861–3865. https://doi.org/10.1007/s10668-020-00704-2

    Article  Google Scholar 

  7. Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, Ferreira LC, Martinez MB (2016) Diarrheagenic Escherichia coli. Braz J Microbiol 47:3–30. https://doi.org/10.1016/j.bjm.2016.10.015

    Article  Google Scholar 

  8. Niranjan V, Malini A (2014) Antimicrobial resistance pattern in Escherichia coli causing urinary tract infection among inpatients. Indian J Med Res 139(6):945–948

    Google Scholar 

  9. Cristina ML, Sartini M, Spagnolo AM (2019) Serratia marcescens infections in neonatal intensive care units (NICUs). Int J Environ Res Public Health 16(4):610. https://doi.org/10.3390/ijerph16040610

    Article  Google Scholar 

  10. Maragakis L, Winkler A, Tucker M, Cosgrove S, Ross T, Lawson E, Carroll K, Perl T (2008) Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit. Infect Control Hosp Epidemiol 29(5):418–423. https://doi.org/10.1086/587969

    Article  Google Scholar 

  11. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B 98(1–2):27–38. https://doi.org/10.1016/j.apcatb.2010.05.001

    Article  Google Scholar 

  12. Valdez-Castillo M, Saucedo-Lucero JO, Arriaga S (2019) Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2. Chem Eng J 374:914–923. https://doi.org/10.1016/j.cej.2019.05.231

    Article  Google Scholar 

  13. Gonzalez-Martin J, Kraakman NJR, Perez C, Lebrero R, Munoz R (2021) A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 262:128376. https://doi.org/10.1016/j.chemosphere.2020.128376

    Article  Google Scholar 

  14. Luo H, Zhong L (2021) Ultraviolet germicidal irradiation (UVGI) for in-duct airborne bioaerosol disinfection: review and analysis of design factors. Build Environ 197:107852. https://doi.org/10.1016/j.buildenv.2021.107852

    Article  Google Scholar 

  15. Liu L, Meng G, Chen H, Wang C, Xue Y (2022) Photocatalytic disinfection of different airborne microorganisms by TiO2/MXene filler: Inactivation efficiency, energy consumption and self-repair phenomenon. J Environ Chem Eng 10(3):107641. https://doi.org/10.1016/j.envpol.2019.01.082

    Article  Google Scholar 

  16. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868. https://doi.org/10.1007/s00253-011-3213-7

    Article  Google Scholar 

  17. Kowalski WJ (2001) Design and optimization of UVGI air disinfection systems, pp 1–263

  18. Lin CY, Li CS (2002) Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci Technol 36(4):474–478. https://doi.org/10.1080/027868202753571296

    Article  Google Scholar 

  19. Liu N, Zhu Q, Zhang N, Zhang C, Kawazoe N, Chen G, Yang Y (2019) Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO2-based composite photocatalyst under LED irradiation: Influence of environmental factors and disinfection mechanism. Environ Pollut 247:847–856. https://doi.org/10.1016/j.envpol.2019.01.082

    Article  Google Scholar 

  20. Evgenidou E, Chatzisalata Z, Tsevis A, Bourikas K, Torounidou P, Sergelidis D, Lambropoulou DA (2021) Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: kinetics, mineralization, antimicrobial activity elimination and disinfection. J Environ Chem Eng 9(4):105295. https://doi.org/10.1016/j.jece.2021.105295

    Article  Google Scholar 

  21. Vu TK, To HT, Negishi N (2022) Application of TiO2-ceramic/UVA photocatalyst for the photodegradation of sulfamethoxazole. Sustain Chem Pharm 26:100617. https://doi.org/10.1016/j.scp.2022.100617

    Article  Google Scholar 

  22. Goswami DY, Trivedi DM, Block SS (1997) Photocatalytic disinfection of indoor air. J Sol Energy Eng. 119(1):92–96. https://doi.org/10.1115/1.1592540

    Article  Google Scholar 

  23. Pal A, Pehkonen SO, Liya EY, Ray MB (2007) Photocatalytic inactivation of gram-positive and gram-negative bacteria using fluorescent light. J Photochem Photobiol A 186(2–3):335–341. https://doi.org/10.1016/j.jphotochem.2006.09.002

    Article  Google Scholar 

  24. Ateia M, Alalm MG, Awfa D, Johnson MS, Yoshimura C (2020) Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review. Sci Total Environ 698(9):134197. https://doi.org/10.1016/j.scitotenv.2019.134197

    Article  Google Scholar 

  25. Yan Y, Zhou X, Lan J, Li Z, Zheng T, Cao W, Nan Z, Liu W (2018) Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres. J Photochem Photobiol, A 367(1):355–364. https://doi.org/10.1016/j.jphotochem.2018.08.045

    Article  Google Scholar 

  26. Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38(4):1069–1077. https://doi.org/10.1016/j.watres.2003.10.029

    Article  Google Scholar 

  27. Cho M, Chung H, Yoon J (2003) Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl Environ Microbiol 69(4):2284–2291. https://doi.org/10.1128/AEM.69.4.2284-2291.2003

    Article  Google Scholar 

  28. Chong MN, Zhu HY, Jin B (2010) Response surface optimization of photocatalytic process for degradation of Congo Red using H-titanate nanofiber catalyst. Chem Eng J 156(2):278–285. https://doi.org/10.1016/j.cej.2009.10.017

    Article  Google Scholar 

  29. Lasa HD, Serrano B, Salaices M (2005) Novel photocatalytic reactors for water and air treatment. Photocatalytic reaction engineering. Springer, Boston, MA, pp 17–47

    Chapter  Google Scholar 

  30. De Lasa HI, Serrano B, Salaices M (2005) Photocatalytic reaction engineering, vol 590. Springer, New York. https://doi.org/10.1007/0-387-27591-6

    Book  Google Scholar 

  31. Behnajady MA, Modirshahla N (2006) Nonlinear regression analysis of kinetics of the photocatalytic decolorization of an azo dye in aqueous TiO2 slurry. Photochem Photobiol Sci 5(11):1078–1081. https://doi.org/10.1039/B610574B

    Article  Google Scholar 

  32. El-Bialy HA, El-Nour A, Salwa A (2015) Physical and chemical stress on Serratia marcescens and studies on prodigiosin pigment production. Ann Microbiol 65(1):59–68. https://doi.org/10.1007/s13213-014-0837-8

    Article  Google Scholar 

  33. Riley RL, Kaufman JE (1972) Effect of relative humidity on the inactivation of airborne Serratia marcescens by ultraviolet radiation. Appl Microbiol 23(6):1113–1120. https://doi.org/10.1128/am.23.6.1113-1120.1972

    Article  Google Scholar 

  34. Hsu TC, Teng YT, Yeh YW, Fan X, Chu KH, Lin SH, Kuo HC (2021) Perspectives on UVC LED: its progress and application. In: Photonics, Vol. 8, No. 6, p 196. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/photonics8060196

  35. Meichtry JM, Litter MI (2012) Solar disinfection as low-cost technologies for clean water production. Renewable Energy Applications for Freshwater Production, pp 207–238

  36. Josset S, Taranto J, Keller N, Keller V, Lett MC, Ledoux MJ, Bonnet V, Rougeau S (2007) UV-A photocatalytic treatment of high flow rate air contaminated with Legionella pneumophila. Catal Today 129(1–2):215–222. https://doi.org/10.1016/j.cattod.2007.08.010

    Article  Google Scholar 

  37. Sahu M, Wu B, Zhu L, Jacobson C, Wang WN, Jones K, Biswas P (2011) Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2 nanoparticles. Nanotechnology 22(41):415–704. https://doi.org/10.1088/0957-4484/22/41/415704

    Article  Google Scholar 

  38. Lu S, Meng G, Wang C, Chen H (2021) Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing 0 0 1 facets. Chem Eng J 404:126526. https://doi.org/10.1016/j.cej.2020.126526

    Article  Google Scholar 

  39. Lighthart B, Hiatt VE, Rossano AT Jr (1971) The survival of airborne Serratia marcescens in urban concentrations of sulfur dioxide. J Air Pollut Control Assoc 21(10):639–642. https://doi.org/10.1080/00022470.1971.10469580

    Article  Google Scholar 

  40. Cutler TD, Zimmerman JJ (2011) Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim Health Res Rev 12(1):15–23. https://doi.org/10.1017/S1466252311000016

    Article  Google Scholar 

  41. Van Grieken R, Marugán J, Pablos C, Furones L, López A (2010) Comparison between the photocatalytic inactivation of gram-positive E. faecalis and gram-negative E. coli faecal contamination indicator microorganisms. Appl Catal B Environ 100(1–2):212–220. https://doi.org/10.1016/j.apcatb.2010.07.034

    Article  Google Scholar 

  42. He J, Zheng Z, Lo IM (2021) Different responses of gram-negative and gram-positive bacteria to photocatalytic disinfection using solar-light-driven magnetic TiO2-based material, and disinfection of real sewage. Water Res 207:117816. https://doi.org/10.1016/j.watres.2021.117816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2752 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishad, V., Mandal, C. & Sahu, M. Study of bioaerosol disinfection kinetics and application of nonlinear regression modeling for optimization of TiO2-based photocatalytic disinfection process. Nanotechnol. Environ. Eng. 8, 911–922 (2023). https://doi.org/10.1007/s41204-023-00338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00338-5

Keywords

Navigation