Skip to main content

Synthesis efficiency of silver nanoparticles by light-emitting diode and microwave irradiation using starch as a reducing agent

Abstract

The present study has investigated the synthesis of silver nanoparticles (AgNPs) using starch as a biodegradable reducing/stabilizing agent with the assistance of microwave heating and light-emitting diode (LED) irradiation. The presence of microwave and LED irradiation enhanced the formation rate of AgNPs. Silver nanoparticles treated with blue LED (AgNPs-L) were produced at a starch concentration of 25 g/L under blue LED treatment for 120 min, while a starch concentration of 25 g/L, the power level of 110 W, and heating time of 5 min were found optimal conditions for silver nanoparticles treated with microwave (AgNPs-M) formation. The synthesized AgNPs-M possessed a sharp absorption peak at a maximum wavelength of 401 nm and spherical with an average size of 19.8 nm. Although a larger particle of 27.8 nm corresponded to a maximum absorption wavelength at 446 nm, AgNPs-L exhibited better antimicrobial activity against Gram-negative bacteria (S. aureus, B. subtilis, and L. fermentum), Gram-positive bacteria (S. enterica, E. coli, and P. aeruginosa), and fungus (C. albicans).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Oluwafemi OS, Vuyelwa N, Scriba M, Songca SP (2013) Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater Lett 106:332–336. https://doi.org/10.1016/j.matlet.2013.05.001

    Article  Google Scholar 

  2. Hamida RS, Abdelmeguid NE, Ali MA, Bin-Meferij MM, Khalil MI (2020) Synthesis of silver nanoparticles using a novel Cyanobacteria desertifilum sp. extract: their antibacterial and cytotoxicity effects. Int J Nanomed 15:49–63. https://doi.org/10.2147/IJN.S238575

    Article  Google Scholar 

  3. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

  4. Kawasaki M, Nishimura N (2006) 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl Surf Sci 253(4):2208–2216. https://doi.org/10.1016/j.apsusc.2006.04.024

    Article  Google Scholar 

  5. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337. https://doi.org/10.1021/jp001803b

    Article  Google Scholar 

  6. Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V (2012) Progressive approach for metal nanoparticle synthesis. Mater Lett 89:47–50. https://doi.org/10.1016/j.matlet.2012.08.048

    Article  Google Scholar 

  7. Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463(1):408–411. https://doi.org/10.1016/j.jallcom.2007.09.048

    Article  Google Scholar 

  8. Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202(1):80–85. https://doi.org/10.1016/S0169-4332(02)00936-4

    Article  Google Scholar 

  9. Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206(1):314–320. https://doi.org/10.1016/S0169-4332(02)01230-8

    Article  Google Scholar 

  10. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcusspecies. Nanotechnol 14(7):824–828. https://doi.org/10.1088/0957-4484/14/7/323

    Article  Google Scholar 

  11. Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. https://doi.org/10.1007/s10529-006-9256-7

    Article  Google Scholar 

  12. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018

    Article  Google Scholar 

  13. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413. https://doi.org/10.1016/j.matlet.2008.06.051

    Article  Google Scholar 

  14. Trung ND, Dam NP, Yen HH, Tuan NT, Hong NT (2021) Rapid synthesis of silver nanoparticles using the extract of Psidium guajava leaf based on light-emitting diodes irradiation. Chem Pap 75(11):5623–5631. https://doi.org/10.1007/s11696-021-01747-z

    Article  Google Scholar 

  15. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:734264. https://doi.org/10.1155/2009/734264

    Article  Google Scholar 

  16. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. https://doi.org/10.1007/s00436-010-2115-4

    Article  Google Scholar 

  17. Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62(17):3103–3105. https://doi.org/10.1016/j.matlet.2008.01.138

    Article  Google Scholar 

  18. Banne SV, Patil MS, Kulkarni RM, Patil SJ (2017) Synthesis and characterization of silver nano particles for EDM applications. Mater Today: Proc 4(11):12054–12060. https://doi.org/10.1016/j.matpr.2017.09.130

    Article  Google Scholar 

  19. Bose S, Chakraborty S, Sanyal D (2018) Water-ethylene glycol mediated synthesis of silver nanoparticles for conductive ink. Mater Today Proc 5(3):9941–9947. https://doi.org/10.1016/j.matpr.2017.10.191

    Article  Google Scholar 

  20. Khodashenas B, Ghorbani HR (2019) Synthesis of silver nanoparticles with different shapes. Arab J Chem 12(8):1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014

    Article  Google Scholar 

  21. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. https://doi.org/10.1126/science.1077229

    Article  Google Scholar 

  22. Yakout SM, Mostafa AA (2015) A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int J Clin Exp Med 8(3):3538–3544

  23. Ayala Valencia G, de Oliveira C, Vercik L, Ferrari R, Vercik A (2013) Synthesis and characterization of silver nanoparticles using water-soluble starch and its antibacterial activity on Staphylococcus aureus. Starch 65(11–12):931–937. https://doi.org/10.1002/star.201200252

    Article  Google Scholar 

  24. Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35. https://doi.org/10.1016/j.flm.2018.04.002

    Article  Google Scholar 

  25. Joseph S, Mathew B (2014) Microwave assisted biosynthesis of silver nanoparticles using the Rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. J Nanopart 2014:1–9. https://doi.org/10.1155/2014/967802

    Article  Google Scholar 

  26. Sritong N, Chumsook S, Siri S (2018) Light emitting diode irradiation induced shape conversion of DNA-capped silver nanoparticles and their antioxidant and antibacterial activities. Artif Cells Nanomed Biotechnol 46(1):955–963. https://doi.org/10.1080/21691401.2018.1439841

    Article  Google Scholar 

  27. Yang Y, Hu Y, Xiong X, Qin Y (2013) Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv 3(22):8431. https://doi.org/10.1039/c3ra00117b

    Article  Google Scholar 

  28. Mathew S, Raveendran A, Mathew J, Radhakrishnan EK (2019) Antibacterial effectiveness of rice water (starch)-capped silver nanoparticles fabricated rapidly in the presence of sunlight. Photochem Photobiol 95(2):627–634. https://doi.org/10.1111/php.13005

    Article  Google Scholar 

  29. Kumar SV, Bafana AP, Pawar P, Rahman A, Dahoumane SA, Jeffryes CS (2018) High conversion synthesis of < 10 nm starch-stabilized silver nanoparticles using microwave technology. Sci Rep 8(1):5106. https://doi.org/10.1038/s41598-018-23480-6

    Article  Google Scholar 

  30. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132(6):1825–1827. https://doi.org/10.1021/ja910010b

    Article  Google Scholar 

  31. Jiamboonsri P, Wanwong S, Cozzoli PD (2021) Photoassisted synthesis of silver nanoparticles using riceberry rice extract and their antibacterial application. J Nanomater 2021:1–18. https://doi.org/10.1155/2021/5598924

    Article  Google Scholar 

  32. Raghavendra GM, Jung J, Kim D, Seo J (2016) Step-reduced synthesis of starch-silver nanoparticles. Int J Biol Macromol 86:126–128. https://doi.org/10.1016/j.ijbiomac.2016.01.057

    Article  Google Scholar 

  33. Horikoshi S, Watanabe T, Narita A, Suzuki Y, Serpone N (2018) The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS). Sci Rep 8(1):5151. https://doi.org/10.1038/s41598-018-23465-5

    Article  Google Scholar 

  34. Kumar A, Kuang Y, Liang Z, Sun X (2020) Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 11:100076. https://doi.org/10.1016/j.mtnano.2020.100076

    Article  Google Scholar 

  35. Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T (2022) Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem Rev 122(2):2752–2906. https://doi.org/10.1021/acs.chemrev.1c00332

    Article  Google Scholar 

  36. Filip GA, Moldovan B, Baldea I, Olteanu D, Suharoschi R, Decea N, Cismaru CM, Gal E, Cenariu M, Clichici S, David L (2019) UV-light mediated green synthesis of silver and gold nanoparticles using Cornelian cherry fruit extract and their comparative effects in experimental inflammation. J Photochem Photobiol B 191:26–37. https://doi.org/10.1016/j.jphotobiol.2018.12.006

    Article  Google Scholar 

  37. Ma G, Zhang L, Kato M, Yamawaki K, Kiriiwa Y, Yahata M, Ikoma Y, Matsumoto H (2012) Effect of blue and red LED light irradiation on beta-cryptoxanthin accumulation in the flavedo of citrus fruits. J Agric Food Chem 60(1):197–201. https://doi.org/10.1021/jf203364m

    Article  Google Scholar 

  38. da Silva RTP, Petri MV, Valencia EY, Camargo PHC, de Torresi SIC, Spira B (2020) Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa. Photodiagn Photodyn Ther 31:101908. https://doi.org/10.1016/j.pdpdt.2020.101908

    Article  Google Scholar 

  39. Ayyad O, Muñoz-Rojas D, Oró-Solé J, Gómez-Romero P (2010) From silver nanoparticles to nanostructures through matrix chemistry. J Nanopart Res 12(1):337–345. https://doi.org/10.1007/s11051-009-9620-3

    Article  Google Scholar 

  40. Kumar B, Angulo Y, Smita K, Cumbal L, Debut A (2016) Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology 24:123–128. https://doi.org/10.1016/j.partic.2015.05.005

    Article  Google Scholar 

  41. Khan Z, Singh T, Hussain JI, Obaid AY, Al-Thabaiti SA, El-Mossalamy EH (2013) Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Colloids Surf B Biointerfaces 102:578–584. https://doi.org/10.1016/j.colsurfb.2012.08.057

    Article  Google Scholar 

  42. Subramanian SB, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohydr Polym 114:170–178. https://doi.org/10.1016/j.carbpol.2014.07.053

    Article  Google Scholar 

  43. Kumar B, Smita K, Cumbal L, Debut A, Pathak RN (2014) Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl 2014:784268. https://doi.org/10.1155/2014/784268

    Article  Google Scholar 

  44. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44(7):469–478. https://doi.org/10.1021/ar1001457

    Article  Google Scholar 

  45. Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62(1):16–26. https://doi.org/10.1071/CH08404

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Can Tho University, Vietnam. The authors would like to thank for the financial support.

Funding

Can Tho University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Thi Nguyen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Nguyen, T.D., Nguyen, D.P. et al. Synthesis efficiency of silver nanoparticles by light-emitting diode and microwave irradiation using starch as a reducing agent. Nanotechnol. Environ. Eng. 7, 297–306 (2022). https://doi.org/10.1007/s41204-022-00231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00231-7

Keywords

  • Antimicrobial activity
  • Reducing/stabilizing agent
  • LED irradiation
  • Microwave heating
  • Silver nanoparticles
  • Starch