Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management

Abstract

Food and agriculture sector directly relate to human life, and therefore intervention of nanotechnology in this sector has been recently approved by the regulatory authorities, very cautiously. The drawbacks associated with traditional methods of farming have restricted the utilization of available farmlands to full its potential. Nanotechnology has emerged as one of the most promising solutions to overcome the shortcomings of traditional agricultural practices. At every stage of agriculture (seed storage, priming, germination, fertigation, post-harvest), nanotechnology promises to improve crop productivity and quality. Use of nanoparticles as seed priming agents to enhance seed germination and crop productivity is encouraging. Nanoformulations positively influence seed germination, shoot to root ratio and overall growth. The site-directed and controlled release of encapsulated fertilizers and pesticides is a revolutionary change for crop improvement, environment and animal health. Efforts are being continuously made to create nanoagrochemicals to release specific nutrients in a controlled fashion, thus maintaining soil fertility and health. Nanotechnology has also helped in the development of smart, stronger and cost-effective polymers or nanocomposites-based packaging materials with efficient gas and water barrier properties. The use of suitable and protective packaging material has the potential to increase shelf life substantially, and thus these nanocoatings have come up as a great interest to the scientific society. This review aims to describe the current applications of nanotechnology in every aspect of agriculture, i.e., from seed priming/storage to post-harvest management of the crop produce.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Vidal J (2012) Food scarcity: the time bomb setting nation against nation. The Guardian. https://www.theguardian.com/global-development/2012/oct/14/food-climate-change-population-water

  2. 2.

    Cackler M (2015) Tha Guardians we need to grow 50% more food yet agriculture causes climate change. How do we get out of this bind? The Guardian. https://www.theguardian.com/global-development-professionals-network/2015/jul/03/we-need-to-grow-50-more-food-yet-agriculture-causes-climate-change-how-do-we-get-out-of-this-bind

  3. 3.

    Lee MH, Lee HJ, Ryu PD (2001) Public health risks: chemical and antibiotic residues-review. Asian-Australas J Anim Sci 14(3):402–413

    Google Scholar 

  4. 4.

    Gooding MJ, Davies WP (1992) Foliar urea fertilization of cereals: a review. Fertil Res 32(2):209–222

    Google Scholar 

  5. 5.

    Altman J, Campbell CL (1977) Effect of herbicides on plant diseases. Annu Rev Phytopathol 15(1):361–385

    Google Scholar 

  6. 6.

    S-l Xing, B-w Han, Liu M-z, Xu M-g (2010) The effect of NPK fertilizer combined with soil organic manure on soil nutrition and wheat yield increasing. J Agro-Environ Sci 29:135–140

    Google Scholar 

  7. 7.

    Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762

    Google Scholar 

  8. 8.

    Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80(15):4803–4807

    Google Scholar 

  9. 9.

    Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham, pp 19–35. https://doi.org/10.1007/978-3-319-14502-0_2

    Google Scholar 

  10. 10.

    Feynman RP (1961) There’s plenty of room at the bottom. In: Gilbert HD (ed) Miniaturization. Reinhold, New York, p 282–296

    Google Scholar 

  11. 11.

    Kumar A (2014) Nanotechnology development in India an overview. Research and Information System for Developing Countries (RIS) research paper 193

  12. 12.

    Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:28. https://doi.org/10.1155/2014/641759

    Article  Google Scholar 

  13. 13.

    Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nanofertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer, Switzerland, pp 81–101

    Google Scholar 

  14. 14.

    Bhagat Y, Gangadhara K, Rabinal C, Chaudhari G, Ugale P (2015) Nanotechnology in agriculture: a review. J Pure App Microbiol 9:737–747

    Google Scholar 

  15. 15.

    Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7(12):1863–1869

    Google Scholar 

  16. 16.

    Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514(Supplement C):131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

    Article  Google Scholar 

  17. 17.

    Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  18. 18.

    Dhewa T (2015) Nanotechnology applications in agriculture: an update. Octa J Environ Res 3(2):204–211

    Google Scholar 

  19. 19.

    Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, division of genetics, IARI, New Delhi

    Google Scholar 

  20. 20.

    Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):8263. https://doi.org/10.1038/s41598-017-08669-5

    Article  Google Scholar 

  21. 21.

    Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Google Scholar 

  22. 22.

    Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Google Scholar 

  23. 23.

    Nounjan N, Siangliw JL, Toojinda T, Chadchawan S, Theerakulpisut P (2016) Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Plant Physiol Biochem 103:96–105

    Google Scholar 

  24. 24.

    Valadkhan M, Mohammadi K, Nezhad MTK (2005) Efect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Biol Forum Int J 7(2):599–602

    Google Scholar 

  25. 25.

    Rahimi D, Kartoolinejad D, Nourmohammadi K, Naghdi R (2016) Increasing drought resistance of Alnus subcordata CA Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. J For Sci 62(6):269–278

    Google Scholar 

  26. 26.

    Mohanlall V, Odayar K, Odhav B (2013) The role of nanoparticles on the plant growth of orthodox and recalcitrant seeds. Adv Compos Biocomposites Nanocomposites 1(1):287–304

    Google Scholar 

  27. 27.

    Karpachev VV, Spiridonov JJ, Voropaeva NL, Tkachev AG, Shachnev NV, Figovsky OL (2016) Pre-sowing seed treatment nanotechnology with environment-friendly nanotube-based nanochips. Int Lett Nat Sci 58:29–34

    Google Scholar 

  28. 28.

    Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczynska E (2016) Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants, 69. https://doi.org/10.5586/aa.1694

  29. 29.

    Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84(Supplement C):277–285. https://doi.org/10.1016/j.plaphy.2014.09.018

    Article  Google Scholar 

  30. 30.

    Das CK, Srivastava G, Dubey A, Verma S, Saxena M, Roy M, Sethy NK, Bhargava K, Singh SK, Sarkar S (2016) The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite. RSc Adv 6(71):67029–67038

    Google Scholar 

  31. 31.

    Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Google Scholar 

  32. 32.

    Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    Google Scholar 

  33. 33.

    Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Google Scholar 

  34. 34.

    Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16(11):26644–26653. https://doi.org/10.3390/ijms161125980

    Article  Google Scholar 

  35. 35.

    Hojjat SS, Hojjat H (2015) Effect of nano silver on seed germination and seedling growth in fenugreek seed. Int J Food Eng 1(2):106–110

    Google Scholar 

  36. 36.

    Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2(6A):815

    Google Scholar 

  37. 37.

    Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Springer, Berlin

    Google Scholar 

  38. 38.

    Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229

    Google Scholar 

  39. 39.

    Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L). In: 2nd International Conference on Agricultural and Animal Science IPCBEE, vol. 22. IACSIT Press, Singapore, pp 160–163

    Google Scholar 

  40. 40.

    Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26

    Google Scholar 

  41. 41.

    DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91

    Google Scholar 

  42. 42.

    Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/nsa.s39406

    Article  Google Scholar 

  43. 43.

    Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Google Scholar 

  44. 44.

    Parise A, Thakor H, Zhang X (2014) Activity inhibition on municipal activated sludge by single-walled carbon nanotubes. J Nanopart Res 16(1):2159

    Google Scholar 

  45. 45.

    Flores D, Chaves JS, Chacón R, Schmidt A (2013) A novel technique using SWCNTs to enhanced development and root growth of fig plants (Ficus carica). In: Technical Proceedings of the NSTI Nanotechnology Conference and Expo (NSTI-Nanotech’13), vol. 3, pp. 167–170

  46. 46.

    Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118

    Google Scholar 

  47. 47.

    Cui D, Ruan H, Zhang X, Hu S, Huang P, Song H, Wang K, Ruan J (2012) Effects of single walled carbon nanotubes on Arabidopsis mesophyll cells. ECS Trans 41(40):43–48

    Google Scholar 

  48. 48.

    Hao Y, Yang X, Shi Y, Xing J, Marowitch J, Chen J, Chen J (2012) FITC delivery into plant cells using magnetic single-walled carbon nanotubes. J Nanosci Nanotechnol 12(8):6287–6293

    Google Scholar 

  49. 49.

    Lou JC, Jung MJ, Yang HW, Han JY, Huang WH (2011) Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). J Environ Sci Health Part A 46(12):1357–1365

    Google Scholar 

  50. 50.

    Ke PC, Lamm MH (2011) A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys 13(16):7273–7283

    Google Scholar 

  51. 51.

    Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931

    Google Scholar 

  52. 52.

    Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31(8):1880–1886

    Google Scholar 

  53. 53.

    Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Google Scholar 

  54. 54.

    Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4(2):203–221

    Google Scholar 

  55. 55.

    Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2(2):112

    Google Scholar 

  56. 56.

    Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584

    Google Scholar 

  57. 57.

    Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841

    Google Scholar 

  58. 58.

    Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310

    Google Scholar 

  59. 59.

    Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk—size particles. Environ Toxicol 27(9):510–517

    Google Scholar 

  60. 60.

    Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Google Scholar 

  61. 61.

    Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Google Scholar 

  62. 62.

    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Google Scholar 

  63. 63.

    Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282

    Google Scholar 

  64. 64.

    Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

    Google Scholar 

  65. 65.

    Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Google Scholar 

  66. 66.

    Liu X-M, Feng Z-B, Zhang F-D, Zhang S-Q, He X-S (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5(9):700–706

    Google Scholar 

  67. 67.

    Guo J (2004) Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1–2):193–225

    Google Scholar 

  68. 68.

    Hussein MZB, Sarijo SH, Yahaya AH, Zainal Z (2007) Synthesis of 4-chlorophenoxyacetate-zinc-aluminium-layered double hydroxide nanocomposite: physico-chemical and controlled release properties. J Nanosci Nanotechnol 7(8):2852–2862

    Google Scholar 

  69. 69.

    bin Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962

    Google Scholar 

  70. 70.

    Ghazali SAISM, Hussein MZ, Sarijo SH (2013) 3, 4-Dichlorophenoxyacetate interleaved into anionic clay for controlled release formulation of a new environmentally friendly agrochemical. Nanoscale Res Lett 8(1):362

    Google Scholar 

  71. 71.

    Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    Google Scholar 

  72. 72.

    Manik A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284

    Google Scholar 

  73. 73.

    Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3(2A):315

    Google Scholar 

  74. 74.

    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Google Scholar 

  75. 75.

    Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Google Scholar 

  76. 76.

    Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  77. 77.

    Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Google Scholar 

  78. 78.

    Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1–3):239–253

    Google Scholar 

  79. 79.

    Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88

    Google Scholar 

  80. 80.

    Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Google Scholar 

  81. 81.

    Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Y-j Wang (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  82. 82.

    Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400

    Google Scholar 

  83. 83.

    Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79

    Google Scholar 

  84. 84.

    Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    Google Scholar 

  85. 85.

    Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90

    Google Scholar 

  86. 86.

    Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    Google Scholar 

  87. 87.

    Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45(4):530–540

    Google Scholar 

  88. 88.

    Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z, Wang Y (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fert Sci 11(3):385–389

    Google Scholar 

  89. 89.

    Srivastava G, Das A, Kusurkar TS, Roy M, Airan S, Sharma RK, Singh SK, Sarkar S, Das M (2014) Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Mater Express 4(1):23–31

    Google Scholar 

  90. 90.

    Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSc Adv 4(102):58495–58504. https://doi.org/10.1039/c4ra06861k

    Article  Google Scholar 

  91. 91.

    Das CK, Srivastava G, Dubey A, Roy M, Jain S, Sethy NK, Saxena M, Harke S, Sarkar S, Misra K, Singh SK, Bhargava K, Philip D, Das M (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1(1):2. https://doi.org/10.1007/s41204-016-0002-7

    Article  Google Scholar 

  92. 92.

    Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25(3):443–447

    Google Scholar 

  93. 93.

    Nekrasova G, Ushakova O, Ermakov A, Uimin M, Byzov I (2011) Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42(6):458

    Google Scholar 

  94. 94.

    Burman U, Saini M, Kumar P- (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Google Scholar 

  95. 95.

    Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Int J Agron Plant Prod 4(11):2997–3003

    Google Scholar 

  96. 96.

    Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686

    Google Scholar 

  97. 97.

    Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951

    Google Scholar 

  98. 98.

    Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSc Adv 6(19):15451–15459

    Google Scholar 

  99. 99.

    Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31(9):2147–2152

    Google Scholar 

  100. 100.

    Yuvaraj M, Subramanian K (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326

    Google Scholar 

  101. 101.

    Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer, Berlin, Heidelberg, pp 1–39

    Google Scholar 

  102. 102.

    Perlatti B, de Souza Bergo PL, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Insecticides-development of safer and more effective technologies. InTech, Rijeka, Croatia

    Google Scholar 

  103. 103.

    Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441

    Google Scholar 

  104. 104.

    Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792

    Google Scholar 

  105. 105.

    Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health Part B 47(3):217–225

    Google Scholar 

  106. 106.

    Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4

    Google Scholar 

  107. 107.

    Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res 1(10):606–608

    Google Scholar 

  108. 108.

    Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora Cordifolia Miers. Parasitol Res 109(1):185–194

    Google Scholar 

  109. 109.

    Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26(3):320–327

    Google Scholar 

  110. 110.

    Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Google Scholar 

  111. 111.

    Madhuri S, Choudhary AK, Rohit K (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:78–82

    Google Scholar 

  112. 112.

    Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Google Scholar 

  113. 113.

    Lamsal K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32

    Google Scholar 

  114. 114.

    Chakravarthy AK, Kandakoor SB, Atanu B, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Curr Biot 6(3):271–281

    Google Scholar 

  115. 115.

    Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    Google Scholar 

  116. 116.

    Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue of State Agri Technologists Service Assoc 1–18

  117. 117.

    Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  118. 118.

    Lodriche SS, Soltani S, Mirzazadeh R (2013) Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. Google Patents

  119. 119.

    Sarijo SH, Bin Hussein MZ, Yahaya AH, Zainal Z, Yarmo MA (2010) Synthesis of phenoxyherbicides-intercalated layered double hydroxide nanohybrids and their controlled release property. Curr Nanosci 6(2):199–205

    Google Scholar 

  120. 120.

    Hussein MZ, Abdul Rahman NSS, Sarijo SH, Zainal Z (2012) Herbicide-intercalated zinc layered hydroxide nanohybrid for a dual-guest controlled release formulation. Int J Mol Sci 13(6):7328–7342

    Google Scholar 

  121. 121.

    Bashi AM, Haddawi SM, Dawood AH (2011) Synthesis and characterizations of two herbicides with Zn/Al layered double hydroxide nano hybrides. J Kerbala Univ 9(1):9–16

    Google Scholar 

  122. 122.

    Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSc Adv 3(26):10471–10478

    Google Scholar 

  123. 123.

    Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Google Scholar 

  124. 124.

    Robertson GL (2005) Food packaging: principles and practice. CRC Press, Boca Raton

    Google Scholar 

  125. 125.

    Kumar SK, Krishnamoorti R (2010) Nanocomposites: structure, phase behavior, and properties. Ann Rev Chem Biomol Eng 1(1):37–58. https://doi.org/10.1146/annurev-chembioeng-073009-100856

    Article  Google Scholar 

  126. 126.

    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Google Scholar 

  127. 127.

    Cortes-Lobos R (2013) Nanotechnology research in the US agri-food sectoral system of innovation: toward sustainable development

  128. 128.

    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  Google Scholar 

  129. 129.

    Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Google Scholar 

  130. 130.

    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Google Scholar 

  131. 131.

    Sumit G, Gyanendra K (2012) Nanotechnology in food packaging a critical review. Russ J Agric Socio-Econ Sci 10(10):14–24

    Google Scholar 

  132. 132.

    Espitia PJP, Soares NdFF, Teófilo RF, dos Reis Coimbra JS, Vitor DM, Batista RA, Ferreira SO, de Andrade NJ, Medeiros EAA (2013) Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94(1):199–208

    Google Scholar 

  133. 133.

    Wyser Y, Adams M, Avella M, Carlander D, Garcia L, Pieper G, Rennen M, Schuermans J, Weiss J (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29(12):615–648

    Google Scholar 

  134. 134.

    Ahvenainen R (2003) Novel food packaging techniques. Elsevier, Amsterdam

    Google Scholar 

  135. 135.

    Brockgreitens J, Abbas A (2016) Responsive food packaging: recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15

    Google Scholar 

  136. 136.

    Tiwari A (2011) Recent developments in bio-nanocomposites for biomedical applications. Nova Science Publishers, New York

    Google Scholar 

  137. 137.

    Abdullaeva Z (2017) Nanomaterials in food industry and packaging. In: Nanomaterials in Daily Life. Springer, Cham, pp. 23–46

    Google Scholar 

  138. 138.

    Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Appl 3:1

    Google Scholar 

  139. 139.

    Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, Part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87(2):316–321

    Google Scholar 

  140. 140.

    Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Google Scholar 

  141. 141.

    Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety—review. Afr J Food Agric Nutr Dev 10(6): 2719–2739

    Google Scholar 

  142. 142.

    Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76(6):R126–R133

    Google Scholar 

  143. 143.

    Dasgupta N, Ranjan S (2018) Nanotechnology in food sector. In: An introduction to food grade nanoemulsions. Springer, Singapore, pp 1–18

    Google Scholar 

  144. 144.

    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Google Scholar 

  145. 145.

    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaurav Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Chaurasia, P., Younis, K. et al. Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol. Environ. Eng. 4, 11 (2019). https://doi.org/10.1007/s41204-019-0058-2

Download citation

Keywords

  • Nanotechnology
  • Agriculture
  • Seed priming
  • Food technology
  • Nanofertilizer
  • Nanoagrochemicals