Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water

Abstract

A green chemical and environmentally benign approach for the synthesis of zinc oxide (ZnO) nanostructure has been explored using aqueous solution of Gum Arabic (GA). Moreover, the added value of applying ultrasound energy to the green synthesis route and its effect on the nanoparticles (NPs) characteristics was considered. The scanning electron and transmission electron images revealed the formation of ZnO nanorods with 3:1 aspect ratio. The crystallite size of the nanostructures derived from X-ray diffraction analysis were 40 and 32 nm for the sample obtained via sonogreen and only green methods, respectively. The band gap energies of the green and sonogreen ZnO were calculated as 3.15 and 3.22 eV, respectively, according to optical analysis data. The photocatalytic performance of samples was tested using dye where a complete decolorization following a pseudo-first-order kinetics was achieved. The current approach exemplifies an entirely green nanomaterials synthesis using a natural product GA and their modifications by applying ultrasound energy. This practice can be expanded to the fabrication of other metal oxide NPs.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Utamapanya S, Klabunde KJ, Schlup JR (1991) Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem Mater 3(1):175–181

    Google Scholar 

  2. 2.

    Jiang Y et al (1998) Catalytic solid state reactions on the surface of nanoscale metal oxide particles. J Catal 180(1):24–35

    Google Scholar 

  3. 3.

    Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44(3):1144–1151

    Google Scholar 

  4. 4.

    Hwangbo Y, Lee Y-I (2019) Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method. J Alloy Compd 771:821–826

    Google Scholar 

  5. 5.

    Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3(2):231–234

    Google Scholar 

  6. 6.

    Wang B et al (2017) Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing. J Alloy Compd 693:902–908

    Google Scholar 

  7. 7.

    de Lima L et al (2017) Magnetic behavior in CoFe2–CoFe2O4 nanocomposites obtained from colloidal synthesis using chitosan and borohydride reduction. J Magn Magn Mater 444:378–382

    Google Scholar 

  8. 8.

    Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Google Scholar 

  9. 9.

    Rao C et al (2003) Size-dependent chemistry: properties of nanocrystals. In: Gopalakrishnan J, Kulkarni GU (eds) Advances in chemistry: a selection of CNR Rao’s publications (1994–2003). World Scientific, pp 227–233

  10. 10.

    Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol Phys Chem 1(2):P110–P117

    Google Scholar 

  11. 11.

    Jha AK et al (2009) Plant system: nature’s nanofactory. Colloids Surf B 73(2):219–223

    Google Scholar 

  12. 12.

    Sharma NC et al (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142

    Google Scholar 

  13. 13.

    Bakar NA, Ismail J, Bakar MA (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104(2–3):276–283

    Google Scholar 

  14. 14.

    Vigneshwaran N et al (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 341(12):2012–2018

    Google Scholar 

  15. 15.

    Chandran SP et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583

    Google Scholar 

  16. 16.

    Kattumuri V et al (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341

    Google Scholar 

  17. 17.

    Kong H et al (2014) Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 65:155–162

    Google Scholar 

  18. 18.

    Wang Z (2007) Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A 88(1):7–15

    Google Scholar 

  19. 19.

    Polsongkram D et al (2008) Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B 403(19–20):3713–3717

    Google Scholar 

  20. 20.

    Hirate T et al (2007) Control of diameter of ZnO nanorods grown by chemical vapor deposition with laser ablation of ZnO. Superlattices Microstruct 42(1–6):409–414

    Google Scholar 

  21. 21.

    Ogata K et al (2003) Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. J Cryst Growth 248:25–30

    Google Scholar 

  22. 22.

    Grabowska J et al (2005) Synthesis and photoluminescence of ZnO nanowires/nanorods. J Mater Sci Mater Electron 16(7):397–401

    Google Scholar 

  23. 23.

    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312

    Google Scholar 

  24. 24.

    Peralta-Videa JR et al (2016) Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 1(1):4

    Google Scholar 

  25. 25.

    Oxley JD, Prozorov T, Suslick KS (2003) Sonochemistry and sonoluminescence of room-temperature ionic liquids. J Am Chem Soc 125(37):11138–11139

    Google Scholar 

  26. 26.

    Goharshadi EK et al (2009) Ultrasound-assisted green synthesis of nanocrystalline ZnO in the ionic liquid [hmim][NTf2]. Ultrason Sonochem 16(1):120–123

    Google Scholar 

  27. 27.

    McNamara WB III, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401(6755):772

    Google Scholar 

  28. 28.

    Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17(4):887–892

    Google Scholar 

  29. 29.

    Jung SH et al (2007) A sonochemical method for fabricating aligned ZnO nanorods. Adv Mater 19(5):749–753

    Google Scholar 

  30. 30.

    Jimmy CY et al (2001) Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Commun 19:1942–1943

    Google Scholar 

  31. 31.

    Wang W, Tadé MO, Shao Z (2015) Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chem Soc Rev 44(15):5371–5408

    Google Scholar 

  32. 32.

    Islam MT et al (2018) Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. J Environ Chem Eng 6(4):3827–3836

    Google Scholar 

  33. 33.

    Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1–2):519–525

    Google Scholar 

  34. 34.

    Badr Y, Mahmoud M (2007) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solids 68(3):413–419

    Google Scholar 

  35. 35.

    Ajmal A et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4(70):37003–37026

    Google Scholar 

  36. 36.

    Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218

    Google Scholar 

  37. 37.

    Balantrapu K, Goia DV (2009) Silver nanoparticles for printable electronics and biological applications. J Mater Res 24(9):2828–2836

    Google Scholar 

  38. 38.

    Idris O, Williams P, Phillips G (1998) Characterisation of gum from Acacia senegal trees of different age and location using multidetection gel permeation chromatography. Food Hydrocoll 12(4):379–388

    Google Scholar 

  39. 39.

    Taha K et al (2012) Analytical study on three types of gum from Sudan. J For Prod Ind 1(1):11–16

    Google Scholar 

  40. 40.

    Sayre RM, Dowdy JC, Poh-Fitzpatrick M (2004) Dermatological risk of indoor ultraviolet exposure from contemporary lighting sources¶†‡ §. Photochem Photobiol 80(1):47–51

    Google Scholar 

  41. 41.

    Meng A et al (2015) Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl Mater Interfaces 7(49):27449–27457

    Google Scholar 

  42. 42.

    Zak AK et al (2011) Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int J Nanomed 6:1399

    Google Scholar 

  43. 43.

    Swarthmore P (1972) Powder diffraction file, joint committee on powder diffraction standards. International center for diffraction data. Card, p. 3-0226

  44. 44.

    Qin Y et al (2015) Sodium sulfate–diatomite composite materials for high temperature thermal energy storage. Powder Technol 282:37–42

    Google Scholar 

  45. 45.

    Ali NE et al (2012) Physicochemical characteristics of some acacia gums. Inter J Agric Res 7:406–413

    Google Scholar 

  46. 46.

    Quan Z et al (2010) Microstructures, surface bonding states and room temperature ferromagnetisms of Zn0 95Co0 05O thin films doped with copper. Appl Surf Sci 256(11):3669–3675

    Google Scholar 

  47. 47.

    Modwi A et al (2018) Structural, surface area and FTIR characterization of ZnO·95−xCuO·05 FeO 0xO nanocomposites prepared via sol–gel method. J Mater Sci Mater Electron 29(3):2184–2192

    Google Scholar 

  48. 48.

    Barrett CS (1943) Structure of metals. McGraw-Hill Book Company, New York

    Google Scholar 

  49. 49.

    Seetawan U et al (2011) Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk. Mater Sci Appl 2(09):1302

    Google Scholar 

  50. 50.

    Pandiyarajan T, Karthikeyan B (2012) Cr doping induced structural, phonon and excitonic properties of ZnO nanoparticles. J Nanoparticle Res 14(1):647

    Google Scholar 

  51. 51.

    Pal U et al (2006) Synthesis and optical properties of ZnO nanostructures with different morphologies. Opt Mater 29(1):65–69

    Google Scholar 

  52. 52.

    Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7(6):526–531

    Google Scholar 

  53. 53.

    Modwi A et al (2016) Influence of annealing temperature on the properties of ZnO synthesized via 2.3. Dihydroxysuccinic acid using flash sol–gel method. J Ovonic Res 12(2):59–66

  54. 54.

    Taha K, M’hamed M, Idriss H (2015) Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. J Ovonic Res 11(6):271–276

    Google Scholar 

  55. 55.

    Barrett C, Massalski T (1980) “Structure of metals, crystallographic methods, principles and data”, international series on materials science and technology. Pergamon, New York

    Google Scholar 

  56. 56.

    Pacholski C, Kornowski A, Weller H (2002) Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed 41(7):1188–1191

    Google Scholar 

  57. 57.

    Vergés MA, Mifsud A, Serna C (1990) Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86(6):959–963

    Google Scholar 

  58. 58.

    Li Q et al (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17(5):1001–1006

    Google Scholar 

  59. 59.

    Sampanthar JT, Zeng HC (2002) Arresting butterfly-like intermediate nanocrystals of β-Co (OH) 2 via ethylenediamine-mediated synthesis. J Am Chem Soc 124(23):6668–6675

    Google Scholar 

  60. 60.

    James RO, Parks GA (1982) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. In: Matijević E (ed) Surface and colloid science, vol 12. Springer, Boston, MA, pp 119–216

    Google Scholar 

  61. 61.

    Karlsson ME et al (2018) Synthesis of zinc oxide nanorods via the formation of sea urchin structures and their photoluminescence after heat treatment. Langmuir 34(17):5079–5087

    Google Scholar 

  62. 62.

    Shulin J, Changhui Y (2009) Synthesis, growth mechanism, and applications of zinc oxide nanomaterials. 材料科学与技术 24(04):457–472

    Google Scholar 

  63. 63.

    Liu B, Zeng HC (2003) Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J Am Chem Soc 125(15):4430–4431

    Google Scholar 

  64. 64.

    Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46

    Google Scholar 

  65. 65.

    Ridha NJ et al (2013) Defects-controlled ZnO nanorods with high aspect ratio for ethanol detection. Int J Electrochem Sci 8:4583–4594

    Google Scholar 

  66. 66.

    Kappadan S et al (2016) Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater Sci Semicond Process 51:42–47

    Google Scholar 

  67. 67.

    Ishwarya R et al (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B 178:249–258

    Google Scholar 

  68. 68.

    Sopajaree K et al (1999) An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: experiments and modelling of a batch-recirculated photoreactor. J Appl electrochem 29(5):533–539

    Google Scholar 

  69. 69.

    Eskizeybek V et al (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B 119:197–206

    Google Scholar 

  70. 70.

    Adeleke J et al (2018) Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl Surf Sci 455:195–200

  71. 71.

    Mishra DD, Tan G (2018) Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19. J Phys Chem Solids 123:157–161

    Google Scholar 

  72. 72.

    Zhang T et al (2001) Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J Photochem Photobiol A 140(2):163–172

    Google Scholar 

  73. 73.

    Jing H-P et al (2014) Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv 4(97):54454–54462

    Google Scholar 

  74. 74.

    Xu Y-H, Liang D-H, Liu D-Z (2008) Preparation and characterization of Cu2O–TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43(12):3474–3482

    Google Scholar 

  75. 75.

    Wang J et al (2018) Graphene oxide as solid-state electron mediator enhanced photocatalytic activities of GO-Ag3PO4/Bi2O3 Z-scheme photocatalyst efficiently by visible-light driven. Mater Technol 33(6):421–432

    Google Scholar 

  76. 76.

    Wu G, Xing W (2018) Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater Technol 33:1–9

  77. 77.

    Houas A et al (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Taha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taha, K.K., Al Zoman, M., Al Outeibi, M. et al. Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water. Nanotechnol. Environ. Eng. 4, 10 (2019). https://doi.org/10.1007/s41204-019-0057-3

Download citation

Keywords

  • ZnO nanorods
  • Gum Arabic
  • Ultrasonic
  • XRD
  • Photodegradation