Abstract
As the number of patients with impaired nerves is continuously increasing day by day around the globe, rehabilitation training by the physical therapist is more time-consuming and less effective. From last two decades, many robot-based upper limb rehabilitation devices have been developed for physical therapy of the human upper limb by employing state-of-the-art technologies. Hence, there is a need for a comprehensive systematic analysis to understand the basic principle and working of rehabilitation devices. The devices are primarily classified as exoskeleton- and end-effector-oriented robotic devices depending on the alignment of the upper limb joints. The objective of the review is to investigate the functionality developments of the robot-based upper limb rehabilitation devices. In this work, a systematic analysis is being carried out depending on the factors such as compatible designs, control aspects, training modes, actuation methods, and clinical developments of the devices. Furthermore, a tabular comparison is presented for the above factors considering different types of robotic devices and the status of the developments. Finally, the scope of improvement is discussed by minimizing the potential gaps between design and prototyping establishments. This review will help the therapists, researchers, and manufacturers to augment the safety and cost-effective concerns for patients with upper limb impairments.
This is a preview of subscription content, access via your institution.





References
Global Health estimates (2012) Geneva: World Health Organization, 2012. www.who.int/healthinfo/global_burden_disease/en/. Accessed 13 Jan 2019
Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V (2019) World stroke organization (WSO): global stroke fact sheet. Int J Stroke. https://doi.org/10.1177/1747493019881353
Reid DC (1992) Sports injury assessment and rehabilitation. Churchill Livingstone, New York
Dodson CC, Cordasco FA (2008) Anterior glenohumeral joint dislocations. Orthop Clin North Am 39(4):507–518
Cauraugh JH, Summe JJ (2005) Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol 75(5):309–320
Lum PS, Burgar CG, Shor PC, Majmundar M, Van Der ML (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959
Gupta A, O’Malley MK (2006) Design of a haptic arm exoskeleton for training and rehabilitation. IEEE-ASME T Mech. 11(3):280–289
Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 43(1):2–10
Sasaki D, Noritsugu T, Takaiwa M (2006) Development of active support splint driven by pneumatic soft actuator (ASSIST). In: IEEE international conference on robotics and automation (ICRA), pp. 520–525, Barcelona, Spain: IEEE
Gopura RA, Kiguchi K, Li Y (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1126–1131, St. Louis (MO), USA
Brewer BR, McDowell SK, Worthen-Chaudhari LC (2007) Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil 14(6):22–44
Norouzi-Gheidari N, Archambault PS, Fung J (2012) Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev 49(4):479
Gopura RA, Bandara DS, Kiguchi K, Mann G (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst. 75:203–220
Kapsalyamov A, Hussain S, Jamwal PK (2020) State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access 8:178991–179001
Stewart AM, Pretty CG, Adams M, Chen X (2017) Review of upper limb hybrid exoskeletons. IFAC-PapersOnLine 50(1):15169–15178
Schwarz A, Kanzler CM, Lambercy O, Luft AR, Veerbeek JM (2019) Systematic review on kinematic assessments of upper limb movements after stroke. Stroke 50(3):718–727
Maciejasz P, Eschweiler J, Gerlach-Hahn K, Leondart S, Troy AJ (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11(1):3–32
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269
Medical Dictionary [Internet], Huntingdon Valley (PA): Farlex Inc., http://medicaldictionary.thefreedictionary.com/, (Accessed in: 30.02.2019)
Kiguchi K, Iwami K, Yasuda M, Watanbe K, Fukada T (2003) An exoskeletal robot for human shoulder joint motion assist. IEEE-ASME T Mech 8(1):125–135
Oda K, Isozumi S, Ohyama Y, Timida K, Kikuchi T, Frusho J (2009) Development of isokinetic and iso-contractile exercise machine “MEM-MRB” using MR brake. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 6–11
Stein J, Narendran K, McBean J, Krebs K, Hughes R (2007) Electromyography-controlled exoskeletal upper-limb–powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 86(4):255–261
Kiguchi K, Esaki R, Tsuruta T, Watanabe K, Fukuda T (2003) An exoskeleton system for elbow joint motion rehabilitation. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Kobe, Japan, (2003), pp. 1228–1233
Hosseini M, Meattini R, Palli G, Melchiorri C (2017) A wearable robotic device based on twisted string actuation for rehabilitation and assistive applications. J Robotics 2017:1–12
Pylatiuk C, Kargov A, Gaiser I, Werner T, Schulz S, Bretthauer G (2009) Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 167–171
Jarrett C, McDaid AJ (2017) Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans Neural Syst Rehabil Eng 25(7):976–986
Beigzadeh B, Ilami M, Najafian S (2016) Design and development of one degree of freedom upper limb exoskeleton. In: 3rd RSI international conference on robotics and mechatronics (ICROM), Tehran, Iran, (2016), pp. 223–228
Cheng HS, Ju MS, Lin CC (2003) Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals. J Biomech Eng 125(6):881–886
Mavroidis C, Nikitczuk J, Weinberg B, Danaher G, Jensen K, Pelletier P, Prugnarola J, Stuart R, Arango R, Leahey M, Pavone R, Provo A, Yasevac D (2005) Smart portable rehabilitation devices. J Neuroeng Rehabil 2(1):18
Vanderniepen I, Ham RV, Damme MV, Versulys R, Lefber D (2009) Orthopaedic rehabilitation: a powered elbow orthosis using compliant actuation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009) pp. 172–177
Triwiyanto T, Wahyunggoro O, Nugroho HA, Herianto H (2001) Evaluating the performance of Kalman filter on elbow joint angle prediction based on electromyography. Int J Prec Eng Manuf. 18(12):1739–1748
Sulzer JS, Peshkin MA, Patton JL Design of a mobile, inexpensive device for upper extremity rehabilitation at home. IEEE 10th international conference on rehabilitation robotics, Noordwijk, The Netherlands, (2007), pp. 933–937
Kung C, Ju MS, Lin CC (2008) Design of a forearm rehabilitation robot. IEEE international conference on rehabilitation robotics (ICORR). Noordwijk, Netherlands, pp 228–233
Freeman CT, Hughes AM, Burridge JH, Chappell PH, Lewin PL, Rogers Eric (2009) A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med Eng Phys 31(3):364–373
Chang JJ, Tung WL, Huang MH, Su FC (2007) Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch Phys Med Rehabil 88(10):1332–1338
Song R, Tong KY, Hu XL, Zheng XJ (2008) Myoelectrically controlled robotic system that provide voluntary mechanical help for persons after stroke. In: IEEE International conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2008), pp. 246–249
Loureiro RC, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin SW (2005) Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 119–122
Colombo R, Pisano F, Mazzone A, Carmen D, Micera S, Chiara M, Dario P, Minuco G (2007) Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil. 4(1):3
Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WWF, Ng S, Yeung AUY (2009) Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol 19(4):639–650
Bionic Laboratories, Toronto, Canada: Bionic Laboratories Corp., http://www.bioniklabs.com, (Accessed in: 18.11.2019)
Khanicheh A, Mintzopoulos D, Weinberg B, Tzika AA, Mavroidis C (2008) Magnetic resonance compatible smart hand rehabilitation device for brain imaging. IEEE Trans Neural Syst Rehabil Eng 6(1):91–98
Nathan DE, MJ Johnson and McGuire J (2009) Feasibility of integrating FES grasp assistance with a task-oriented robot-assisted therapy environment: a case study. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Scottsdale (AZ), USA, (2009), pp. 807–812
Tyromotion gmbh, Graz, AUSTRIA: Tyromotion GmbH. https://tyromotion.com/en/, (Accessed in: 18.11.2019)
Ho NS, Tong KY, Hu XL, Hu XL, Fung KL, Wei XJ, Rong W, Susanto EA (2011) An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich, Switzerland, (2011), pp. 1–5
Winter SH, Bouzit M (2007) Use of magnetorheological fluid in a force feedback glove. IEEE Trans Neural Syst Rehabil Eng 15(1):2–8
Kline T, Kamper D, Schmit B Control system for pneumatically controlled glove to assist in grasp activities. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp.78-81
Lucas L, Dicicco M, Matsuoka Y (2004) An EMG-controlled hand exoskeleton for natural pinching. J Robot Mechatron 16(5):482–488
Worsnopp TT, Peshkin MA, Colgate JE, Kamper DG (2007) An actuated finger exoskeleton for hand rehabilitation following stroke. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2007), pp. 896-901
Broadened Horizons, Wilmington (DE): Broadened Horizons Inc., http://www.BroadenedHorizons.com, (accessed in: 18.02.2019)
Hesse S, Kuhlmann H, Wilk J, Tomelleri C, Kirker S (2008) A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients. J Neuroeng Rehabil. 5(1):21
Bower C, Taheri H, Wolbrecht E (2013) Adaptive control with state-dependent modeling of patient impairment for robotic movement therapy. In: IEEE international conference on rehabilitation robotics (ICORR), Seattle (WA), USA, (2013), pp. 1–6
Bouzit M, Burdea G, Popescu G, Boian R (2002) The Rutgers master II-new design force-feedback glove. IEEE/ASME Trans Mechatron 7:256–263
Schabowsky CN, Godfrey SB, Holley RJ, Lum PS (2010) Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil. 7(1):36
Mulas M, Folgheraiter M, Gini G (2005) An EMG-controlled exoskeleton for hand rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 371–374
Xing K, Xu Q, He J, Wang Y, Liu Z, Huang X (2009) A wearable device for repetitive hand therapy. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA, (2009), pp. 919–923
Sarakoglou I, Tsagarakis NG, Caldwell DG Occupational and physical therapy using a hand exoskeleton based exerciser. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, Japan, (2010), pp. 2973–2978
Ferguson PW, Dimapasoc B, Shen Y, Rosen J (2018) Design of a hand exoskeleton for use with upper limb exoskeletons. In: international symposium on wearable robotics, (2018), pp. 276–280
Rotella MF, Reuther KE, Hofmann CL, Hage EB, Busha BF (2009) An orthotic hand-assistive exoskeleton for actuated pinch and grasp. In: IEEE 35th annual northeast bioengineering conference, Boston (MA), USA, (2009), pp. 1–2
Mali U, Munih M (2006) HIFE-haptic interface for finger exercise. IEEE-ASME Trans Mech. 11(1):93–102
Wege A, Hommel G (2005) Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), Edmonton, Alta., Canada, (2005), pp. 3046–3051
Gloreha: Hand rehabilitation, Lumezzane (BS), Italy: Gloreha,” https://www.gloreha.com/, (accessed in 12.04.2019)
Dovat L, Lambercy O, Gassert R, Maeder T, Milner T, Leong TC, Burdet E (2008) HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabil Eng 16(6):582–591
Chen M, Ho SK, Zhou HF, Pang PMK, Hu XL, Ng DTW, Tong KY (2009) Interactive rehabilitation robot for hand function training. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 777–780
Tong KY, Ho SK, Pang PM, Hu XL, Tam WK, Fung KL, Wei XJ, Chen PN, Chen M (2010) An intention driven hand functions task training robotic system. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Buenos Aires, Argentina, (2010), pp. 3406–3409
Fleischer C, Kondak K, Wege A, Kossyk I (2009) Research on exoskeletons at the TU Berlin. In: Advances in robotics research, pp. 335–346
Rosen J, Brand M, Fuchs MB, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybern A Syst Hum. 31(3):210–222
Kiguchi K, Rahman MH, Sasaki M, Teramoto K (2008) Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Robot Auton Syst. 56(8):678–691
Mahdavian M, Toudeshki AG, Koma Y (2016) A Design and fabrication of a 3DoF upper limb exoskeleton. In: 3rd RSI international conference on robotics and mechatronics (ICROM), Tehran, Iran, (2016), pp. 342–346
Klein J, Spencer S, Allington J, Bobrow JE, David J (2010) Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot 26(4):710–715
Stienen AH, Hekman EE, Prange GB, Jannink MJA, Aalsma AMM, Helm FCT, Kooij VD (2009) Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation. J Med Device 3(3):031003
Stienen AH, Hekman EE, Schouten AC, van der Helm FC, van der Kooij H (2009) Suitability of hydraulic disk brakes for passive actuation of upper-extremity rehabilitation exoskeleton. Appl Bionics Biomech 6(2):103–114
Nef T, Mihelj M, Kiefer G, Perndl C, Muller R, Riener R (2008) ARMin-Exoskeleton for arm therapy in stroke patients. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, pp. 68–74
Garrec P, Friconneau JP, Measson Y, Perrot Y (2008) ABLE, an innovative transparent exoskeleton for the upper-limb. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, France (2008) pp. 1483–1488
Pirondini E, Coscia M, Marcheschi S, Roas G, Salsedo F, Frisoli A, Bergamasco M, Micera S (2014) Evaluation of a new exoskeleton for upper limb post-stroke neuro-rehabilitation: preliminary results. In: Replace, repair, restore, relieve–bridging clinical and engineering solutions in neurorehabilitation, Springer, Cham, pp. 637–645
Stroppa F, Loconsole C, Marcheschi S, Frisoli A (2017) A robot-assisted neuro-rehabilitation system for post-stroke patients’ motor skill evaluation with ALEx exoskeleton. Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 501–505
Crea S, Cempini M, Moisè M, Baldoni A, Trigili E, Marconi D, Cortese M, Giovacchini F, Posteraro F, Vitiello N (2016) A novel shoulder-elbow exoskeleton with series elastic actuators. In: 6th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Singapore, Singapore, (2016), pp. 1248–1253
Accogli A, Grazi L, Crea S, Panarese A, Carpaneto J, Vitiello N, Micera S (2017) EMG-based detection of user’s intentions for human-machine shared control of an assistive upper-limb exoskeleton. Wearable robotics: challenges and trends. Springer, Cham, pp 181–185
Kobayashi H, Nozaki H (2007) Development of muscle suit for supporting manual worker. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego (CA), USA (2007) pp. 1769–1774
Sutapun A, Sangveraphunsiri V (2017) Novel design and implementation of a 4-DOF upper limb exoskeleton for stroke rehabilitation with active assistive control strategy. Engg J. 21(7):275–291
Brackbill EA, Mao Y, Agrawal SK, Annapragada M, Dubey VN (2009) Dynamics and control of a 4-dof wearable cable-driven upper arm exoskeleton. In: IEEE international conference on robotics and automation (ICRA), Kobe, Japan (2009) pp. 2300–2305
Zhou L, Bai S, Andersen MS, Rasmussen J (2015) Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity. Model Identif Control. 36(3):167–177
Micera S, Carrozza MC, Guglielmelli E, Cappiello G, Zaccone F, Freschi C, Colombo R, Mazzone A, Delconte C, Pisano F, Minuco G (2005) A simple robotic system for neurorehabilitation. Auton Robots 19(3):271–284
Ju MS, Lin CC, Lin DH, Hwang IS, Chen SM (2005) A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans Neural Syst Rehabil Eng 13(3):349–358
Rosati G, Gallina P, Masiero S (2007) Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(4):560–569
Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O’Connor RJ, Levesley M (2014) Home-based computer assisted arm rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil 11(1):163
M. Sivan (2014) Development of a home-based computer assisted arm rehabilitation (hCAAR) device for upper limb exercises in stroke patients. MD Thesis, LIRMM, University of Leeds
M. D. Ellis, T. Sukal, T. DeMott and J. P. Dewald (2008) ACT3D exercise targets gravity-induced discoordination and improves reaching work area in individuals with stroke. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, pp. 890–895
Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37(6):653–662
Schoone M, Van Os P, Campagne A, Robot-mediated active rehabilitation (ACRE) a user trial. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 477–481
Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 dof wire-based robot for rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA (2005) pp. 430–433
Burgar CG, Lum PS, Shor PC, Van der Loos HM (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–674
Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84(6):915–920
Allington J, Spencer SJ, Klein J, Buell M, Reinkensmeyer DJ, Bobrow J (2011) Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston (MA), USA (2011) pp. 1579-1582
Spencer SJ, Klein J, Minakata K, Le V, Bobrow JE, Reinkensmeyer DJ (2009) A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 869–874
Gopura RA, Kiguchi K (2009) A human forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 550–555
Gupta A, O’Malley MK, Patoglu V, Burgar C (2008) Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. Int J Rob Res 27(2):233–251
Krebs HL, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):327–335
Cordo P, Lutsep H, Cordo L, Wright WG, Cacciatore T, Skoss R (2009) Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehabil Neural Repair. 23(1):67–77
Koeneman EJ, Schultz RS, Wolf SL, Herring DE, Koeneman JB (2004) A pneumatic muscle hand therapy device. In: 26th Annual international conference of the IEEE engineering in medicine and biology society (IEMBS), San Francisco (CA) USA (2004) pp. 2711–2713
Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2007) Robot-based hand motor therapy after stroke. Brain 131(2):425–437
K. Kiguchi, Y. Kose and Y. Hayashi (2010) An upper-limb power-assist exoskeleton robot with task-oriented perception-assist. In: 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Tokyo, Japan, pp. 88–93
Li Z, Huang Z, He W, Su CY (2017) Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2):1664–1674
Vertechy R, Frisoli A, Dettori A, Solazzi M, Bergamasco M (2009) Development of a new exoskeleton for upper limb rehabilitation.In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 188–193
Frisoli A, Borelli L, Montagner A, Marcheschi S, Procopio C, Salsedo F, Bergamasco M, Carboncini MC, Tolaini M, Rossi B (2008) Arm rehabilitation with a robotic exoskeleton in virtual reality. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 631–642
Carignan C, Tang J, Roderick S, Naylor M (2008) A configuration-space approach to controlling a rehabilitation arm exoskeleton. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 179–187
Johnson GR, Carus DA, Parrini G, Marchese S, Valeggi R (2001) The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng H. 215(3):275–284
Rahman MH, Kittel-Ouimet T, Saad M, Kenné JP, Archambault PS (2012) Development and control of a robotic exoskeleton for shoulder, elbow and forearm movement assistance. Appl Bionics Biomech. 9(3):275–292
John MS, Thomas N, Sivakumar VP (2016) Design and development of cable driven upper limb exoskeleton for arm rehabilitation. Int J Sci Eng Res. 7(3):1432–1440
Pignolo L, Dolce G, Basta G, Lucca LF, Serra S, Sannita WG (2012) Upper limb rehabilitation after stroke: ARAMIS a “robo-mechatronic” innovative approach and prototype. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, Italy (2012) pp. 1410–1414
Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G (2007) Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J Neuroeng Rehabil. 4(1):4
Fluet GG, Qiu Q, Saleh S, Ramirez D, Adamovich S, Kelly D, Parikh H (2009) Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with upper extremity hemiplegia. In: Virtual rehabilitation international conference; Haifa, Israel (2009) pp. 189–192
Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 3(15):367–378
Ding M, Ueda J, Ogasawara T (2009) Pinpointed muscle force control using a power-assisting device: system configuration and experiment. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 181–186
Fitle KD, Pehlivan AU, O’Malley MK (2015) A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. In: IEEE international conference on robotics and automation (ICRA), Seattle (WA), USA (2015) pp. 4960–4966
Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N, Blank AA, French J, Karmonik C, Grossman RG, O’Malley MK, Francisco GE (2016) Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front Neurosci. 10:122
Gunasekara M, Gopura R, Jayawardena S (2015) 6-REXOS: Upper limb exoskeleton robot with improved pHRI. Int J Adv Robot Syst. 12(4):47
Scherer R, Pradhan R, Dellon B, Kim D, Klatzky R, Matsuoka Y (2009) Characterization of multi-finger twist motion toward robotic rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 812–817
Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T (2007) A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng 15(3):356–366
Hasegawa Y, Mikami Y, Watanabe K, Sankai Y (2008) Five-fingered assistive hand with mechanical compliance of human finger. In: IEEE international conference on robotics and automation (ICRA), Pasadena (CA), USA (2008) pp. 718–724
Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Sakaeda H, Abe M (2008) Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 234–240
Casadio M, Sanguineti V, Morasso PG, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 14(3):123–142
Kikuchi T, Ozawa T, Akai H, Furusho J (2009) “Hybrid-PLEMO”, rehabilitation system for upper limbs with active/passive force feedback, and its application for facilitation techniques. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 781–786
Rosati G, Zanotto D, Secoli R, Rossi A (2009) Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 560–565
Takahashi Y, Terada T, Inoue K, Ito Y, Ikeda Y, Lee H, Komeda T (2008) Haptic device system for upper limb motor and cognitive function rehabilitation: Grip movement comparison between normal subjects and stroke patients. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 736–741
Tanaka Y, Ishii M, Tsuji T, Imamura N (2008) Modeling and evaluation of human motor skills in a virtual tennis task. In: 30th Annual international conference of the IEEE engineering in medicine and biology society (EMBS), Vancouver (BC), Canada (2008) pp. 4190–4193
Xiu-Feng Z, Lin-Hong J, Li-Yun G (2006) A novel robot neurorehabilitation for upper limb motion. In: 27th Annual conference of the IEEE engineering in medicine and biology (EMBS), Shanghai, China,pp. 5040–5043
Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346
Balasubramanian S, Wei R, Perez M, Shepard B, Koeneman E, Koeneman J, He J (2008) RUPERT: an exoskeleton robot for assisting rehabilitation of arm functions. In: Virtual rehabilitation, Vancouver (BC), Canada, pp. 163–167
Kang HB, Wang JH (2015) Adaptive robust control of 5 DOF upper-limb exoskeleton robot. Int J Control Autom Syst 13(3):733–741
Nef T, Guidali M, Riener R (2009) ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142
Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R (2011) A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput 49(10):1213–1223
Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatronics 12(4):408–417
Tsagarakis NG, Caldwell DG (2003) Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Auton Robot 15(1):21–33
Rahman MH, Ouimet TK, Saad M, Kenne JP, Archambault PS (2010) Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. In: IECON 2010-36th Annual conference on IEEE industrial electronics society, Glendale (AZ), USA (2010) pp. 1506–1511
Rahman MH, Saad M, Kenné JP, Archambault PS (2013) Control of an exoskeleton robot arm with sliding mode exponential reaching law. Int J Control Autom Syst 11(1):92–104
Cui X, Chen W, Jin X, Agrawal SK (2017) Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172
Garrido J, Yu W, Li X (2016) Modular design and control of an upper limb exoskeleton. J Mech Sci Technol 30(5):2265–2271
Kim H, Kim J (2017) Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface. J Korean Phys Soc. 70(7):726–734
Umemura A, Saito Y, Fujisaki K (2009) A study on power-assisted rehabilitation robot arms operated by patient with upper limb disabilities. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 451–456
Liu L, Shi YY, Xie L (2016) A novel multi-dof exoskeleton robot for upper limb rehabilitation. J Mech Med Biol 16(08):1640023
Schiele A, Van Der Helm FC (2006) Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng 14(4):456–469
Furusho J, Koyanagi KI, Imada Y, Fujii Y, Nakanishi K, Domen K, Miyakoshi K, Ryu U, Takenaka S, Inoue A (2005) A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA (2005), pp. 53–56
Denève A, Moughamir S, Afilal L, Zaytoon J (2008) Control system design of a 3-DOF upper limbs rehabilitation robot. Comput Methods Programs Biomed 89(2):202–214
Furuhashi Y, Nagasaki M, Aoki T, Morita Y, Ukai H, Matsui N (2009) Development of rehabilitation support robot for personalized rehabilitation of upper limbs. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009) pp. 787–792
Adamovich SV, Fluet GG, Merians AS, Mathai A, Qiu Q (2009) Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):512–520
Beer RF, Naujokas C, Bachrach B, Mayhew D (2009) Development and evaluation of a gravity compensated training environment for robotic rehabilitation of post-stroke reaching. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA, (2009), pp. 205–210
Furusho J, Kikuchi T, Oda K, Ohyama Y, Morita T, Shichi N, Jin Y, Inoue A (2007) A 6-dof rehabilitation support system for upper limbs including wrists “robotherapist” with physical therapy. In: 2007 IEEE 10th international conference on rehabilitation robotics, Noordwijk, Netherlands, (2007), pp. 304–309
Tsai BC, Wang WW, Hsu LC, Fu LC, Lai JS (2010) An articulated rehabilitation robot for upper limb physiotherapy and training. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, Taipei, Taiwan, (2010), pp. 1470–1475
Kim YS, Lee J, Lee S, Kim M (2005) A force reflected exoskeleton-type masterarm for human-robot interaction. IEEE Trans Syst Man Cybern A Syst Hum 35(2):198–212
“Hocoma, Hocoma (AG), Switzerland: Hocoma AG corporation,” https://www.hocoma.com/, (accessed in 12.04.2019)
Mayr A, Kofler M, Saltuari L (2008) ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchir Mikrochir Plast Chir 40(1):66–73
Loureiro RC, Harwin WS (2007) Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2007), pp. 757–763
Ren Y, Park HS, Zhang LQ (2009) Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 761–765
Motorika, Mount Laurel (NJ): Motorika USA Inc.,” http://motorika.com/, (Accessed in 12.04.2019)
Wolbrecht ET, Leavitt J, Reinkensmeyer DJ, Bobrow JE (2006) Control of a pneumatic orthosis for upper extremity stroke rehabilitation. In: 2006 International conference of the IEEE engineering in medicine and biology society, New York (NY), USA, (2006), pp. 2687–2693
Sanchez R, Reinkensmeyer DE, Shah P, Liu J, Rao S, Smith R, Cramer S, Rahman T, Bobrow J (2004) Monitoring functional arm movement for home-based therapy after stroke. In: 26th Annual international conference of the IEEE engineering in medicine and biology society (IEMBS), San Francisco (CA), USA, pp. 4787–4790
Otten A, Voort C, Stienen A, Aarts R, van Asseldonk E, van der Kooij H (2015) LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE ASME Trans Mechatron 20(5):2285–2298
Mushage BO, Chedjou JC, Kyamakya K (2017) Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dyn 87(3):2021–2037
Toth A, Fazekas G, Arz G, Jurak M, Horvath M (2005) Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 127–130
Morales R, Badesa FJ, García-Aracil N, Sabater JM, Pérez-Vidal C (2011) Pneumatic robotic systems for upper limb rehabilitation. Med Biol Eng Comput. 49(10):1145–1156
Culmer PR, Jackson AE, Makower SG, Cozens JA, Levesley MC, Mon-Williams M, Bhakta B (2011) A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke. J Neurosci Methods 197(2):259–269
Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 6(1):75–87
Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84(4):477–482
Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T, Klauer C, Pascual J, Vidaurre C, Gföhler M, Reichenfelser W (2013) MUNDUS project: MUltimodal Neuroprosthesis for daily Upper limb Support. J Neuroeng Rehabil. 10(1):66
Oblak J, Cikajlo I, Matjacic Z (2009) A universal haptic device for arm and wrist rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009). pp. 436–441
Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 6(1):20
Verma V, Gupta A, Gupta MK, Chauhan P (2020) Performance estimation of computed torque control for surgical robot application. J. Mech. Eng. Sci. 14(3):7017–7028
Bembli S, Haddad NK, Belghith S (2019) Computer aided decision model to control an exoskeleton-upper limb system. In: IEEE international conference on advanced systems and emergent technologies (IC_ASET), Hammamet, Tunisia, (2019), pp. 166–172
Tang Z, Zhang K, Sun S, Gao Z, Zhang L, Yang Z (2014) An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 14(4):6677–6694
Wu Q, Wang X, Chen B, Wu H (2018) Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 53:85–94
Brahmi B, Saad M, Luna C, Archambault P, Rahman M (2018) Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties. Robotica 36(11):1757–1779
Kim MJ, Lee W, Choi J, Chung G, Han KL, Choi IS, Ott C, Chung WK (2019) A passivity-based nonlinear admittance control with application to powered upper-limb control under unknown environmental interactions. IEEE-ASME T Mech 24(4):1473–1484
Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 34(3):261–268
Kalita B, Dwivedy SK (2020) Nonlinear dynamic response of pneumatic artificial muscle: A theoretical and experimental study. Int J Nonlin Mech 125:103544
Dindorf R, Wos P (2019) Using the bioelectric signals to control of wearable orthosis of the elbow joint with bi-muscular pneumatic servo-drive. Robotica 38:804
Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17(9):1256–1269
Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8):741–754
Eliasson AC, Gordon AM (2019) Constraint-induced movement therapy for children and youth with hemiplegic/unilateral cerebral palsy. In: Miller F, Bachrach S, Lennon N, O'Neil M (eds) Cerebral palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_175-1
Waller SM, Whitall J (2008) Bilateral arm training: why and who benefits? NeuroRehabilitation 23(1):29–41
Narayan J, Mishra S, Jaiswal G, Dwivedy SK (2020) Novel design and kinematic analysis of a 5-DOFs robotic arm with three-fingered gripper for physical therapy. Mater Today Proc 28(4):2121–2132
Gupta A, Singh A, Verma V, Mondal AK, Gupta MK (2020) Developments and clinical evaluations of robotic exoskeleton technology for human upper-limb rehabilitation. Adv Robot 34(15):1023–1040
Xiao F, Gao Y, Wang Y, Zhu Y, Jhao J (2018) Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J Mech Sci Technol 32:855–864
Frisoli A, Sotgiu E, Procopio C, Bergamasco M, Chisari C, Lamola G, Rossi B (2012) Training and assessment of upper limb motor function with a robotic exoskeleton after stroke. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, (2012), pp. 1782–1787
Saita K, Morishita T, Hyakutake K, Ogata T, Fukuda H, Kamada S, Inoue T (2020) Feasibility of robot-assisted rehabilitation in poststroke recovery of upper limb function depending on the severity. Neurol Med Chir 60(4):217–222
Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9):1960–1966
Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ (2006) Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev 43(5):619–630
Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI (2008) Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair 22(3):305–310
Rabadi MH, Galgano M, Lynch D, Akerman M, Lesser M, Volpe BT (2008) A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial. Clin Rehabil 22(12):1071–1082
Lum PS, Burgar CG, Van der Loos M, Shor PC (2006) MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev 43(5):631–643
Lum PS, Burgar CG, Shor PC (2004) Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 12(2):186–194
Coote S, Murphy B, Harwin W, Stokes E (2008) The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil 22(5):395–405
Fazekas G, Horvath M, Troznai T, Toth A (2007) A Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med 39(7):580–582
Housman SJ, Le V, Rahman T, Sanchez RJ, Reinkensmeyer DJ (2007) Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: IEEE 10th international conference on rehabilitation robotics, Noordwijk, Netherlands, (2007), pp. 562–568
Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514
Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–389
Frisoli A, Bergamasco M, Carboncini MC, Rossi B (2009) Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud Health Technol Inform 145:40–54
Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A (2013) Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol 13(2):159–166
Staubli P, Nef T, Klamroth-Marganska V, Riener R (2009) Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 6(1):46
Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ (2013) A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 10(1):112
Loureiro RC, Lamperd B, Collin C, Harwin WS (2009) Reach & grasp therapy: effects of the gentle/G system assessing sub-acute stroke whole-arm rehabilitation. In: IEEE international conference on rehabilitation robotics, Kyoto, Japan, (2009), pp. 755–760
Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts JL (2010) Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther 90(4):493–504
Rosenstein L, Ridgel AL, Thota A, Samame B, Alberts JL (2008) Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. Am J Occup Ther 62(1):28–35
Frick EM, Alberts JL (2006) Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Phys Ther 86(10):1378–1386
Colombo R, Sterpi I, Mazzone A, Delconte C, Minuco G, Pisano F (2009) Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 18(1):75–85
Casadio M, Giannoni P, Morasso P, Sanguineti V (2009) A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clin Rehabil. 23(3):217–228
Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M (2009) Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med 41(12):966–970
Casadio M, Sanguineti V, Solaro C, Morasso PG (2007) A haptic robot reveals the adaptation capability of individuals with multiple sclerosis. Int J Rob Res. 26(11–12):1225–1233
Vergaro E, Squeri V, Brichetto G, Casadio M, Morasso P, Solaro C, Sanguineti V (2010) Adaptive robot training for the treatment of incoordination in multiple sclerosis. J Neuroeng Rehabil. 7(1):37
Vanoglio F, Luisa A, Garofali A, Mora C (2013) Evaluation of the effectiveness of Gloreha (Hand Rehabilitation Glove) on hemiplegic patients. Pilot study. In: XIII congress of Italian Society of neurorehabilitation, Bari, Italy, pp. 18–20
Varalta V, Smania N, Geroin C, Fonte C, Gandolfi M, Picelli A, Munari D, Ianes P, Montemezzi G, La Marchina E (2013) March. Effects of passive rehabilitation of the upper limb with robotic device Gloreha on visual-spatial and attentive exploration capacities of patients with stroke issues. In: XIII congress of Italian society of neurorehabilitation, Bari, Italy
Lo AC (2012) Clinical designs of recent robot rehabilitation trials. Am J Phys Med Rehabil 91(11):S204–S216
Singla A, Narayan J, Arora H (2020) Investigating the potential of redundant manipulators in narrow channels. Proc Inst Mech Eng C J Mec Eng Sci. https://doi.org/10.1177/0954406220964512
Narayan J, Dwivedy SK (2020) Towards neuro-fuzzy compensated PID control of lower extremity exoskeleton system for passive gait rehabilitation. IETE J Res. 7:1–18
Gupta M, Narayan J, Dwivedy SK (2020) Modeling of a novel lower limb exoskeleton system for paraplegic patients. In: Maity D, Siddheshwar P, Saha S. (Eds) Advances in fluid mechanics and solid mechanics. Lecture notes in mechanical engineering. Springer, Singapore
Wendong W, Hanhao L, Menghan X, Yang C, Xiaoqing Y, Xing M, Bing Z (2020) Design and verification of a human–robot interaction system for upper limb exoskeleton rehabilitation. Med Eng Phys 79:19–25
Barreiros AP, Dong Y, Ignee A, Wastl D, Dietrich CF (2019) EchoScopy in scanning abdominal diseases; a prospective single center study. Med Ultrasonogr 21(1):8–15
Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1783
Lee M, Rittenhouse M, Abdullah HA (2005) Design issues for therapeutic robot systems: results from a survey of physiotherapists. J Intell Robot Syst 42(3):239–252
Pei YC, Chen JL, Wong AMK, Tseng KC (2017) An evaluation of the design and usability of a novel robotic bilateral arm rehabilitation device for patients with stroke. Front. Neurorobot 11:36
Vaca Benitez LM, Tabie M, Will N, Schmidt S, Jordan M, Kirchner EA (2013) Exoskeleton technology in rehabilitation: Towards an EMG-based orthosis system for upper limb neuromotor rehabilitation. J Robotics. https://doi.org/10.1155/2013/610589
Kyrkjebø E, Laastad MJ, Stavdahl Ø (2018) Feasibility of the UR5 industrial robot for robotic rehabilitation of the upper limbs after stroke. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), Madrid, Spain, (2018), pp. 1–6
Kandilakis C, Sasso-Lance E (2019) Exoskeletons for personal use after spinal cord injury. Arch Phys Med Rehabil., In press, pp. 1–7
Stanger CA, Anglin C, Harwin WS, Romilly DP (1994) Devices for assisting manipulation: a summary of user task priorities. IEEE Trans. Rehabil. Eng. 2(4):256–265
Lo K, Stephenson M, Lockwood C (2019) The economic cost of robotic rehabilitation for adult stroke patients: a systematic review. JBI Database Syst. Rev Implement. Rep. 17(4):520–547
Gupta A, Mondal AK, Gupta MK (2019) Kinematic, dynamic analysis and control of 3 DOF upper-limb robotic exoskeleton. J. Eur. En Des Systèmes Autom. 52(3):297–304
Bélaise C, Maso FD, Michaud B, Mombaur K, Begon M (2018) An EMG-marker tracking optimisation method for estimating muscle forces. Multibody Syst Dyn. 42(2):119–143
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Narayan, J., Kalita, B. & Dwivedy, S.K. Development of Robot-Based Upper Limb Devices for Rehabilitation Purposes: a Systematic Review. Augment Hum Res 6, 4 (2021). https://doi.org/10.1007/s41133-020-00043-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41133-020-00043-x