Skip to main content
Log in

Dopamine neurotransmitter determination using graphite sheet–graphene nano-sensor

  • Original Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

Abstract

In this study, graphene oxide was electrochemically deposited and reduced on a graphite sheet. The electrode surface morphology was studied by scanning electron microscopy. The performance of the modified electrode in detecting dopamine was investigated. The results indicate that the electrodeposition of reduced graphene oxide onto the electrode surface increases the dopamine oxidation current, decreases the overpotential, and reduces the charge transfer resistance. The efficiency of dopamine detection by this modified electrode was evaluated using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The effects of electrolyte pH, potential scan rate, electrode reproducibility, and selectivity were investigated. Furthermore, for the stability test, the chronoamperometry technique was performed, and the results demonstrated that the electrode has excellent stability. This electrode provides a low detection limit of 68 nM and a wide linear range from 0.1 to 1000 µM. For real sample analysis, measurements were successfully conducted on a dopamine ampule as a cardiovascular drug. This nanosensor takes advantage of a simple and rapid fabrication process at a low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available from the corresponding author based on a reasonable request.

References

  1. Grant CE, Flis AL, Ryan BM (2022) Understanding the role of dopamine in cancer: past, present and future. Carcinogenesis 43(6):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu B-T, Nagarajan D, Kaliyamoorthy S, Rathinam B (2022) Citrate functionalized zirconium-based metal organic framework for the fluorescent detection of ciprofloxacin in aqueous media. Micromachines 13(12):2097

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arumugasamy SK, Govindaraju S, Yun K (2020) Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci 508:145294

    Article  CAS  Google Scholar 

  4. Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ (2023) Dopamine, immunity, and disease. Pharmacol Rev 75(1):62–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ognjanović M, Stanković DM, Jaćimović ŽK, Kosović-Perutović M, Dojčinović B, Antić B (2021) The effect of surface-modifier of magnetite nanoparticles on electrochemical detection of dopamine and heating efficiency in magnetic hyperthermia. J Alloys Compd 884:161075

    Article  Google Scholar 

  6. Sippy T, Tritsch NX (2023) Unraveling the dynamics of dopamine release and its actions on target cells. Trends in Neurosci 46:228–239

    Article  CAS  Google Scholar 

  7. Ayano G (2016) Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat 2(120):2

    Google Scholar 

  8. Kurzina N, Aristova I, Volnova A, Gainetdinov R (2020) Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze. Behav Brain Res 390:112642

    Article  CAS  PubMed  Google Scholar 

  9. Manconi M, Garcia-Borreguero D, Schormair B, Videnovic A, Berger K, Ferri R, Dauvilliers Y (2021) Restless legs syndrome. Nat Rev Dis Primers 7(1):80

    Article  PubMed  Google Scholar 

  10. Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ (2022) The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 47(3):628–640

    Article  CAS  PubMed  Google Scholar 

  11. Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30(5):188–193

    Article  CAS  PubMed  Google Scholar 

  12. Govindasamy M, Manavalan S, Chen S-M, Rajaji U, Chen T-W, Al-Hemaid FM, Ali MA, Elshikh MS (2018) Determination of neurotransmitter in biological and drug samples using gold nanorods decorated f-MWCNTs modified electrode. J Electrochem Soc 165(9):B370

    Article  CAS  Google Scholar 

  13. Dobryakova E, Genova HM, DeLuca J, Wylie GR (2015) The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front Neurol 6:52

    Article  PubMed  PubMed Central  Google Scholar 

  14. Govindaraju S, Ankireddy SR, Viswanath B, Kim J, Yun K (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep 7(1):1–12

    Article  Google Scholar 

  15. Wang J, Dai J, Xu Y, Dai X, Zhang Y, Shi W, Sellergren B, Pan G (2019) Molecularly imprinted fluorescent test strip for direct, rapid, and visual dopamine detection in tiny amount of biofluid. Small 15(1):1803913

    Article  Google Scholar 

  16. Sun Y, Lin Y, Ding C, Sun W, Dai Y, Zhu X, Liu H, Luo C (2018) An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica@ graphite oxide polymers. Sens Actuat B Chem 257:312–323

    Article  CAS  Google Scholar 

  17. Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J, Xu G (2018) Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal Chem 91(3):2135–2139

    Article  Google Scholar 

  18. Zhao Y, Zhao S, Huang J, Ye F (2011) Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta 85(5):2650–2654

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Zhang H, Shi H, Ma C, Cong B, Kang W (2012) Determination of three major catecholamines in human urine by capillary zone electrophoresis with chemiluminescence detection. Anal Biochem 427(1):10–17

    Article  CAS  PubMed  Google Scholar 

  20. Kim T-H, Choi J, Kim H-G, Kim HR (2014) Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry. J Anal Methods Chem 2014:506870

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qi D, Zhang Q, Zhou W, Zhao J, Zhang B, Sha Y, Pang Z (2016) Quantification of dopamine in brain microdialysates with high-performance liquid chromatography–tandem mass spectrometry. Anal Sci 32(4):419–424

    Article  CAS  PubMed  Google Scholar 

  22. Ferry B, Gifu E-P, Sandu I, Denoroy L, Parrot S (2014) Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection. J Chromatogr B 951:52–57

    Article  Google Scholar 

  23. Sajid M, Baig N, Alhooshani K (2019) Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC, Trends Anal Chem 118:368–385

    Article  CAS  Google Scholar 

  24. Dutta S, Ray C, Mallick S, Sarkar S, Sahoo R, Negishi Y, Pal T (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119(41):23790–23800

    Article  CAS  Google Scholar 

  25. Peaston RT, Weinkove C (2004) Measurement of catecholamines and their metabolites. Ann Clin Biochem 41(1):17–38

    Article  CAS  PubMed  Google Scholar 

  26. Nezhad MH, Tashkhourian J, Khodaveisi J (2010) Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. J Iran Chem Soc 7(2):S83–S91

    Article  CAS  Google Scholar 

  27. Gao G, Zhang Z, Wang K, Yuan Q, Wang X (2017) One-pot synthesis of dendritic Pt 3 Ni nanoalloys as nonenzymatic electrochemical biosensors with high sensitivity and selectivity for dopamine detection. Nanoscale 9(31):10998–11003

    Article  CAS  PubMed  Google Scholar 

  28. Nafady A, Tahira A, Sherazi STH, Shaikh T, Arain M, Willander M, Ibupoto ZH (2017) An amperometric sensitive dopamine biosensor based on novel copper oxide nanostructures. Microsyst Technol 23(5):1229–1235

    Article  Google Scholar 

  29. Aravind SJ, Ramaprabhu S (2012) Dopamine biosensor with metal oxide nanoparticles decorated multi-walled carbon nanotubes. Nanosci Methods 1(1):102–114

    Article  Google Scholar 

  30. Kudur Jayaprakash G, Swamy BK, Flores-Moreno R, Pineda-Urbina K (2023) Theoretical and cyclic voltammetric analysis of asparagine and glutamine electrocatalytic activities for dopamine sensing applications. Catalysts 13(1):100

    Article  CAS  Google Scholar 

  31. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191

    Article  CAS  PubMed  Google Scholar 

  32. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47

    Article  Google Scholar 

  33. Ghiabi C, Ghaffarinejad A, Kazemi H, Salahandish R (2018) In situ, one-step and co-electrodeposition of graphene supported dendritic and spherical nano-palladium-silver bimetallic catalyst on carbon cloth for electrooxidation of methanol in alkaline media. Renew Energy 126:1085–1092

    Article  CAS  Google Scholar 

  34. Bacil RP, Chen L, Serrano SH, Compton RG (2020) Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH. Phys Chem Chem Phys 22(2):607–614

    Article  CAS  PubMed  Google Scholar 

  35. Demirkan B, Bozkurt S, Cellat K, Arıkan K, Yılmaz M, Şavk A, Çalımlı MH, Nas MS, Atalar MN, Alma MH (2020) Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid. Sci Rep 10(1):1–10

    Article  Google Scholar 

  36. Han G, Cai J, Liu C, Ren J, Wang X, Yang J, Wang X (2021) Highly sensitive electrochemical sensor based on xylan-based Ag@ CQDs-rGO nanocomposite for dopamine detection. Appl Surf Sci 541:148566

    Article  CAS  Google Scholar 

  37. Petković BB, Ognjanović M, Krstić M, Stanković V, Babincev L, Pergal M, Stanković DM (2020) Boron-doped diamond electrode as efficient sensing platform for simultaneous quantification of mefenamic acid and indomethacin. Diam Relat Mater 105:107785

    Article  Google Scholar 

  38. Jiang J, Ding D, Wang J, Lin X, Diao G (2021) Three-dimensional nitrogen-doped graphene-based metal-free electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, uric acid, and acetaminophen. Analyst 146(3):964–970

    Article  CAS  PubMed  Google Scholar 

  39. Song N-n, Wang Y-z, Yang X-y, Zong H-l, Chen Y-x, Ma Z, Chen C-x (2020) A novel electrochemical biosensor for the determination of dopamine and ascorbic acid based on graphene oxide/poly (aniline-co-thionine) nanocomposite. J Electroanal Chem 873:114352

    Article  CAS  Google Scholar 

  40. Yue HY, Zhang HJ, Huang S, Lu XX, Gao X, Song SS, Wang Z, Wang WQ, Guan EH (2020) Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Mater Sci Eng, C 108:110490

    Article  CAS  Google Scholar 

  41. Elugoke SE, Fayemi OE, Adekunle AS, Mamba BB, Nkambule TT, Ebenso EE (2022) Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode. FlatChem 33:100372

    Article  CAS  Google Scholar 

  42. Ni M, Chen J, Wang C, Wang Y, Huang L, Xiong W, Zhao P, Xie Y, Fei J (2022) A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem J 178:107410

    Article  CAS  Google Scholar 

  43. Ahmed J, Faisal M, Alsareii S, Jalalah M, Harraz FA (2023) A novel gold-decorated porous silicon-poly (3-hexylthiophene) ternary nanocomposite as a highly sensitive and selective non-enzymatic dopamine electrochemical sensor. J Alloys Compd 931:167403

    Article  CAS  Google Scholar 

  44. Li F, Ni B, Zheng Y, Huang Y, Li G (2021) A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. Surf Interfaces 26:101375

    Article  CAS  Google Scholar 

  45. Cai Z, Ye Y, Wan X, Liu J, Yang S, Xia Y, Li G, He Q (2019) Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials 9(6):835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deepika J, Sha R, Badhulika S (2019) A ruthenium (IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim Acta 186(7):1–10

    Article  CAS  Google Scholar 

  47. Stanković DM, Ognjanović M, Fabián M, Avdin VV, Manojlović DD, Đurić SV, Petković BB (2021) CeO2-doped–domestic carbon material decorated with MWCNT as an efficient green sensing platform for electrooxidation of dopamine. Surf Interfaces 25:101211

    Article  Google Scholar 

  48. Hui X, Xuan X, Kim J, Park JY (2019) A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim Acta 328:135066

    Article  CAS  Google Scholar 

  49. Cervini P, Mattioli IA, Cavalheiro ÉT (2019) Developing a screen-printed graphite–polyurethane composite electrode modified with gold nanoparticles for the voltammetric determination of dopamine. RSC Adv 9(72):42306–42315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu S, Wang H, Zhao B, Cao T, Ma J, Liu L, Tong Z (2022) Construction of cationic polyfluorinated azobenzene/reduced graphene oxide for simultaneous determination of dopamine, uric acid and ascorbic acid. Talanta 237:122986

    Article  CAS  PubMed  Google Scholar 

  51. Mani V, Govindasamy M, Chen S-M, Karthik R, Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275

    Article  CAS  Google Scholar 

  52. Devasenathipathy R, Mani V, Chen S-M, Viswanath B, Vasantha V, Govindasamy M (2014) Electrodeposition of gold nanoparticles on a pectin scaffold and its electrocatalytic application in the selective determination of dopamine. RSC Adv 4(99):55900–55907

    Article  CAS  Google Scholar 

  53. Sakthivel K, Govindasamy M, Chen SM, Muthumariappan A, Mani V, Chen T-W, Selvaraj S (2017) MWCNTs/MoS2 decorated cobalt oxide polyhedrons composite film modified electrode for electrochemical determination of dopamine in rat brain and human blood serum samples. Int J Electrochem Sci 12(8):7435–7445

    Article  CAS  Google Scholar 

  54. Govindasamy M, Chen S-M, Mani V, Sathiyan A, Merlin JP, Al-Hemaid FM, Ali MA (2016) Simultaneous determination of dopamine and uric acid in the presence of high ascorbic acid concentration using cetyltrimethylammonium bromide–polyaniline/activated charcoal composite. RSC Adv 6(102):100605–100613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the research councils of the Iran University of Science and Technology for supporting this research and providing the laboratory facility.

Funding

There is no funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

MHK was contributed to writing—original draft, investigation, formal analysis. AG was contributed to conceptualization, project administration, Writing—review and editing, supervision.

Corresponding author

Correspondence to Ali Ghaffarinejad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain Informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehpour, M.H., Ghaffarinejad, A. Dopamine neurotransmitter determination using graphite sheet–graphene nano-sensor. Graphene and 2D mater 9, 125–135 (2024). https://doi.org/10.1007/s41127-024-00075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-024-00075-9

Keywords

Navigation