Graphene Technology

, Volume 2, Issue 3–4, pp 47–62 | Cite as

Quantification and analysis of Raman spectra of graphene materials

  • Velram Balaji Mohan
  • Michel Nieuwoudt
  • Krishnan Jayaraman
  • Debes Bhattacharyya
Original Article


Graphene has received significant attention in recent years due to its outstanding electronic, mechanical, chemical and physical properties. Graphene materials can potentially be used in a variety of applications, such as functional nanocomposites, electrodes, flexible transparent devices and thin conductive films. This article focuses on the analysis of structural evolution and development of different of reduced graphene oxides (rGOs), and the results are compared with structural features of functionalised reduced graphene oxide and graphene. The aromatic disorder and irregularity of these materials influence their own properties; particularly, their electrical conductivity aspects were studied indirectly through Raman spectroscopy. The quantification of their Raman spectra and microstructural analysis were examined to assess the relationship between aromatic structures and electrical conduction mechanism. The results showed that aromaticity of GO changes under different chemical reduction treatments and hydroiodic acid reduction gave an electrical conductivity of 103.3 S cm−1 as highest amongst a number of rGOs produced. Moreover, the integrity of aromatic structure through different reduced graphene oxides changed quite significantly and the Raman results were able to correlate the electrical conductivity with their structural regularity.


Graphene oxide Reduced graphene oxide Raman spectroscopy Gaussian quantification Aromaticity Electrical conductivity 



This work was supported by the Ministry of Business, Innovation and Employment, New Zealand (Grant Number 3706657), under Sustainable Research Grant. Dr. Reuben Brown is thanked for his help and assistance with the quantification of Raman spectra.


  1. 1.
    Buckley JD, Edie DD (1993) Carbon–carbon materials and composites. Noyes Publications, New YorkGoogle Scholar
  2. 2.
    Mohan VB, Jayaraman K, Bhattacharyya D (2016) Hybridisation of graphene reinforced two polymer nanocomposites. Int J Smart Nano Mater 7(3):179–201. doi: 10.1080/19475411.2016.1237389 CrossRefGoogle Scholar
  3. 3.
    Mohan VB, Jayaraman K, Bhattacharyya D (2016) Relevance of adhesion in particulate/fibre-polymer composites and particle coated fibre yarns: a critical review. Rev Adhes Adhes 4(2):119–151. doi: 10.7569/RAA.2016.097308 CrossRefGoogle Scholar
  4. 4.
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200. doi: 10.1038/nature11458 CrossRefGoogle Scholar
  5. 5.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902. doi: 10.1002/smll.201002009 CrossRefGoogle Scholar
  6. 6.
    Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46(10):2211–2224. doi: 10.1021/ar300159f CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. doi: 10.1002/adma.201001068 CrossRefGoogle Scholar
  8. 8.
    Dimitrijev S (2006) Principles of semiconductor devices. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Katsnel'son MI (2012) Graphene: carbon in two dimensions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Davies DK (1964) Trapped charges on dielectrics. Nature 203(4942):290–291. doi: 10.1038/203290a0 CrossRefGoogle Scholar
  11. 11.
    Gordiz K, Henry A (2016) Phonon transport at interfaces: determining the correct modes of vibration. J Appl Phys 119(1):015101. doi: 10.1063/1.4939207 CrossRefGoogle Scholar
  12. 12.
    Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861. doi: 10.1038/nmat2011 CrossRefGoogle Scholar
  13. 13.
    Alwarappan S (2014) Graphene-based materials: science and technology. Taylor & Francis, Boca RatonGoogle Scholar
  14. 14.
    Choi W, Lee J-W (2012) Graphene: synthesis and applications. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  16. 16.
    Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, Dotzer C, Röckert M, Xiao J, Papp C (2013) Wet chemical synthesis of graphene. Adv Mater 25(26):3583–3587. doi: 10.1002/adma.201300155 CrossRefGoogle Scholar
  17. 17.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023. doi: 10.1016/j.carbon.2011.02.071 CrossRefGoogle Scholar
  18. 18.
    Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474. doi: 10.1016/j.carbon.2010.08.006 CrossRefGoogle Scholar
  19. 19.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi: 10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  20. 20.
    Nakajima T, Mabuchi A, Hagiwara R (1988) A new structure model of graphite oxide. Carbon 26(3):357–361. doi: 10.1016/0008-6223(88)90227-8 CrossRefGoogle Scholar
  21. 21.
    Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992. doi: 10.1002/adfm.200900167 CrossRefGoogle Scholar
  22. 22.
    Mohan VB, Brown R, Jayaraman K, Bhattacharyya D (2015) Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater Sci Eng B 193:49–60. doi: 10.1016/j.mseb.2014.11.002 CrossRefGoogle Scholar
  23. 23.
    Su Q, Pang S, Alijani V, Li C, Feng X, Müllen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21(31):3191–3195. doi: 10.1002/adma.200803808 CrossRefGoogle Scholar
  24. 24.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. doi: 10.1021/cr050569o CrossRefGoogle Scholar
  25. 25.
    Chakraborty C, Dana K, Malik S (2010) Intercalation of perylenediimide dye into LDH clays: enhancement of photostability. J Phys Chem C 115(5):1996–2004. doi: 10.1021/jp110486r CrossRefGoogle Scholar
  26. 26.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126. doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  27. 27.
    Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov K, Basko D, Ferrari A (2009) Raman spectroscopy of graphene edges. Nano Lett 9(4):1433–1441. doi: 10.1021/nl8032697 CrossRefGoogle Scholar
  28. 28.
    Kaiser AB, Gómez-Navarro C, Sundaram RS, Burghard M, Kern K (2009) Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett 9(5):1787–1792. doi: 10.1021/nl803698b CrossRefGoogle Scholar
  29. 29.
    Mohan VB, Liu D, Jayaraman K, Stamm M, Bhattacharyya D (2016) Improvements in electronic structure and properties of graphene derivatives. Adv Mater Lett 7(6):421–429. doi: 10.5185/amlett.2016.6123 CrossRefGoogle Scholar
  30. 30.
    Ameer S, Gul IH, Mahmood N, Mujahid M (2015) Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: temperature/microwave magneto-dielectric spectroscopy. Mater Charact 99:254–265. doi: 10.1016/j.matchar.2014.11.018 CrossRefGoogle Scholar
  31. 31.
    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M (2009) Raman spectroscopy in graphene. Phys Rep 473(5):51–87. doi: 10.1016/j.physrep.2009.02.003 CrossRefGoogle Scholar
  32. 32.
    Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46(7):1112–1114. doi: 10.1039/b917705a CrossRefGoogle Scholar
  33. 33.
    Mohan VB, Jayaraman K, Stamm M, Bhattacharyya D (2016) Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films 616:172–182. doi: 10.1016/j.tsf.2016.08.007 CrossRefGoogle Scholar
  34. 34.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290. doi: 10.1039/b613962k CrossRefGoogle Scholar
  35. 35.
    Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73. doi: 10.1038/ncomms1067 CrossRefGoogle Scholar
  36. 36.
    Diez-Betriu X, Alvarez-Garcia S, Botas C, Alvarez P, Sanchez-Marcos J, Prieto C, Menendez R, de Andres A (2013) Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J Mater Chem C 1(41):6905–6912. doi: 10.1039/c3tc31124d CrossRefGoogle Scholar
  37. 37.
    Liu H, Zhang L, Guo Y, Cheng C, Yang L, Jiang L, Yu G, Hu W, Liu Y, Zhu D (2013) Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J Mater Chem C 1(18):3104–3109. doi: 10.1039/c3tc00067b CrossRefGoogle Scholar
  38. 38.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano 3(4):210–215. doi: 10.1038/nnano.2008.67 CrossRefGoogle Scholar
  39. 39.
    Kaniyoor A, Ramaprabhu S (2012) A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2 (3):032183. doi. 10.1063/1.4756995
  40. 40.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246. doi: 10.1038/nnano.2013.46 CrossRefGoogle Scholar
  41. 41.
    Kumar R, Mehta BR, Bhatnagar M, Ravi S, Mahapatra S, Salkalachen S, Jhawar P (2014) Graphene as a transparent conducting and surface field layer in planar Si solar cells. Nanoscale Res Lett 9(1):349. doi: 10.1186/1556-276X-9-349 CrossRefGoogle Scholar
  42. 42.
    Wall M (2011) The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Fisher Scientific, Madison.
  43. 43.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57. doi: 10.1016/j.ssc.2007.03.052 CrossRefGoogle Scholar
  44. 44.
    Murr LE (2009) Nanoparticulate materials in antiquity: the good, the bad and the ugly. Mater Charact 60(4):261–270. doi: 10.1016/j.matchar.2008.03.012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Centre for Advanced Composite MaterialsThe University of AucklandAucklandNew Zealand
  2. 2.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations