Skip to main content

Risk and Resilience Analysis of Public Civil Buildings Against Shelling with Explosive Sources in Urban Contexts

Abstract

Due to their high availability and low cost level, passive protection measures are a key factor for reducing the vulnerability of persons within and close to assets against potentially impacting mortar, rocket and artillery threats. Particularly, mortar shelling has even most recently been reported. At risk are permanent and nonpermanent assets of civil, (non)governmental or peacekeeping organizations with corresponding effects, e.g., on civil society, civil services or successful nation building, respectively. Of interest are the identification of vulnerable areas and the assessment of the effectiveness of protective structures while taking also other counter measures into account. To this end, a seven-step quantitative risk and resilience analysis and management methodology is described and applied. It consists of the analysis of scenarios, frequencies, hazards, damage effects and risks and yields individual and collective risks for multi-threat scenarios. Local individual or collective risks can be minimized below criteria, thus reducing vulnerability and increasing resilience in an efficient way, e.g., by using geometrical changes, by structural roof, wall and window retrofits, by mitigating barriers and/or organizational measures. The approach is demonstrated along with three detailed example cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. AASTP-1 (2015) Allied Ammunition Storage and Transport Publication AASTP-1. NATO guidelines for the storage of military ammunition and explosives. Edition B, Version 4: North Atlantic Treaty Organization (Allied Ammunition Storage and Transport Publication)

  2. AASTP-4 (2016) Allied Ammunition Storage and Transport Publication AASTP-4. Explosive safety risk analysis part 1: Guidelines for risk-based decisions. Edition 1, Version 4: North Atlantic Treaty Organization (Allied Ammunition Storage and Transport Publication)

  3. Arfken GB, Weber HJ, Harris FE (2005) Mathematical methods for physicists, 6th edn. Academic Press, Cambridge

    Google Scholar 

  4. Aschmoneit T, Häring I (2010) Resampling expert estimates for the consequence parameterization of explosions. In: ESREL annual conference 2010. Rhodes, Greece

  5. Baker WE (1983) Explosion hazards and evaluation. Fundamental studies in engineering. Elsevier, Amsterdam

    Google Scholar 

  6. Ball RE (2003) The fundamentals of aircraft combat survivability analysis and design. American Institute of Aeronautics and Astronautics (AIAA education series), Reston

    Google Scholar 

  7. Bergen P (2017) London shows the challenge of preventing low-tech terror. In: CNN, 2017. https://edition.cnn.com/2017/03/22/opinions/low-tech-terror-hard-to-defend-against-bergen/. Accessed 20 Feb 2019

  8. Block J (2017) A laws of war review of contemporary land-based missile defence system ‘Iron Dome’. SCIM 45(2):105–128. https://doi.org/10.5787/45-2-1207

    Article  Google Scholar 

  9. Carlucci DE, Jacobson SS (2008) Ballistics: theory and design of guns and ammunition. CRC, Boca-Raton

    Google Scholar 

  10. Coaffee J, Moore C, Fletcher D, Bosher L (2008) Resilient design for community safety and terror-resistant cities. Proceedings of the ICE: Municipal Engineer 161(2):103–110. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.4686&rep=rep1&type=pdf. Accessed 26 Feb 2019

  11. Cozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure—Part I. Probit models. J Hazard Mater 107(3):67–80

    Article  Google Scholar 

  12. DIN 33402-2 (2005): Ergonomie - Körpermaße des Menschen, Teil 2: Werte. DIN Deutsches Institut für Normung. Beuth Verlag, Berlin

  13. Dörr A (2005): Risikobewertungsverfahren für sehr kleine bis mittlere Munitionsmengen - Zwischenbericht Explosionspolytrauma. Fraunhofer Institute for High-Speed-Dynamics EMI. Efringen-Kirchen

  14. Dörr A, Gürke G (2004) Consequence models for small netto explosive quantities. Department of defense explosives safety seminar 2004, Fraunhofer Institute for High-Speed-Dynamics EMI: San Antonio, Texas, USA

  15. Dorsch H (2007) Modularity, one way to joint international survivablity/vulnerability models. In: Proceedings of 2-nd European Survivability Workshop 23–25 March 2004, Noordwijkerhout, The Netherlands

  16. Finney D (1971) Probit analysis, vol 2. Cambridge University Press, Cambridge, p 350

    Google Scholar 

  17. Fischer K, Häring I, Riedel W, Vogelbacher G, Hiermaier S (2016) Susceptibility, vulnerability, and averaged risk analysis for resilience enhancement of urban areas. International Journal of Protective Structures 7(1):45–76. https://doi.org/10.1177/2041419615622727

    Article  Google Scholar 

  18. Fischer K, Hiermaier S, Riedel W, Häring I (2018) Morphology dependent assessment of resilience for urban areas. Sustainability 10(6):1800. https://doi.org/10.3390/su10061800

    Article  Google Scholar 

  19. Häring I (2005) Grundlagenstudie zur Überflugsicherheit (3. Zwischenbericht): Quantifizierte Schädigung von Personen durch Splitter und Blast, 2005, Fraunhofer Institut für Kurzzeitdynamik EMI

  20. Häring I (2015) Risk analysis and management: engineering resilience. Springer Singapore, Singapore

    Book  Google Scholar 

  21. Häring I, Schönherr M, Rizzuti C (2007) Quantitative hazard and risk analysis for fragments of high explosive shells in air In: ESREL 2007, the 18th European safety and reliability conference, reliability & system safety engineering 2009

  22. Häring I, Schönherr M, Loos M (2009a) GIS-based risk analysis with person densities, 2009, Fraunhofer Institut für Kurzzeitdynamik EMI

  23. Häring I, Schönherr M, Richter C (2009b) Quantitative hazard and risk analysis for fragments of high-explosive shells in air. Reliability Engineering & System Safety 94(9):1461–1470. https://doi.org/10.1016/j.ress.2009.02.003

    Article  Google Scholar 

  24. Häring I, von Ramin M, Stottmeister A, Schäfer J, Vogelbacher G, Brombacher B et al (2018) Validated 3D spatial stepwise quantitative hazard, risk and resilience analysis and management of explosive events in urban areas. Eur J Secur Res 71(1):59. https://doi.org/10.1007/s41125-018-0035-y

    Article  Google Scholar 

  25. Holmes JD (2010) Windborne debris and damage risk models: a review. Wind and Structures An International Journal 13(2):95–108. https://doi.org/10.12989/was.2010.13.2.095

    Article  Google Scholar 

  26. Kastner M (2009) Monte Carlo methods in statistical physics: mathematical foundations and strategies. Commun Nonlinear Sci Numer Simul 15:1589–1602

    Article  Google Scholar 

  27. Kaufman A, Cohen D, Yagel R (1993) Volume graphics. Computer 26(7):51–64. https://doi.org/10.1109/mc.1993.274942

    Article  Google Scholar 

  28. Langwost A, Sdunnus H, Gunia D, Drolshagen G, Soerensen J, Hauptmann S (2005) Presentation of the PC Version of the esabase/debris impact analysis tool. In: 4th European conference on space debris (ESA SP-587). Darmstadt, Germany, 18-20 April 2005. ESA/ESOC

  29. Lin N, Vanmarcke E (2008) Windborne debris risk assessment. Probab Eng Mech 23(4):523–530

    Article  Google Scholar 

  30. Lin N, Vanmarcke E (2010) Windborne debris risk analysis—Part I. Introduction and methodology. Wind and Structures An International Journal 13(2):191–206. https://doi.org/10.12989/was.2010.13.2.191

    Article  Google Scholar 

  31. Lin N, Vanmarcke E, Yau S-C (2010) Windborne debris risk analysis—Part II Application to structural vulnerability modeling. Wind and Structures An International Journal 13(2):207–220. https://doi.org/10.12989/was.2010.13.2.207

    Article  Google Scholar 

  32. Loeb J (2017) Anti-drone technology to be test flown on UK base amid terror fears. In: Engineering and technology. https://eandt.theiet.org/content/articles/2017/03/anti-drone-technology-to-be-test-flown-on-uk-base-amid-terror-fears/. Accessed 19 Jan 2019

  33. Marusek JA (2007) Comet and asteroid threat impact analysis. In: AIAA planetary defense conference. The Cloyd Heck Marvin Center, George Washington University, Washington, D.C., March 5–8, 2007. American Institute of Aeronautics and Astronautics

  34. Masters FJ, Gurley KR, Shah N, Fernandez G (2010) The vulnerability of residential window glass to lightweight windborne debris. Eng Struct 32(4):911–921. https://doi.org/10.1016/j.engstruct.2009.12.016

    Article  Google Scholar 

  35. McCoy R (1999) Modern exterior ballistics: The launch and flight dynamics of symmetric projectiles. Schiffer Publishing, Atglen

    Google Scholar 

  36. McDonald H (2017) Belfast man jailed in Germany for IRA Osnabrück mortar attack. In The guardian, 2017. https://www.theguardian.com/uk-news/2017/oct/25/belfast-man-jailed-germany-ira-osnabruck-mortar-attack-british-army-barracks. Accessed 30 Jan 2019

  37. Miller V, Hayward KJ (2019) ‘I Did My Bit’: terrorism, tarde and the vehicle ramming attack as an imitative event. Br J Criminol 59(1):1–23. https://doi.org/10.1093/bjc/azy017

    Article  Google Scholar 

  38. NYT (1985) I.R.A. MORTARS KILL 9 AT ULSTER BASE. In The New York Times, March 1, 1985. https://www.nytimes.com/1985/03/01/world/ira-mortars-kill-9-at-ulster-base.html. Accessed 30 Jan 2019

  39. Oswald M, Stabroth S, Wiedemann C, Vörsmann P, Klinkrad H (2005) Orbital debris risk assessment with MASTER-2005. In: 1st IAASS conference: space safety—a new beginning. Nice, France

  40. Panteleev VA (2008) Quantitative risk assessment of aircraft impact on a high-rise building and collapse. In: Resilience of cities to terrorist and other Threats—Learning from 9/11 and further RESEARCH ISSUES, pp 145–167

  41. Pei Y, Song B-F, Han Q (2007) Method for assessing vulnerability of aircraft to spray fragments of missile. Systems Engineering - Theory & Practice 27(2):161–166

    Article  Google Scholar 

  42. Péreza JFS et al (2009) New probit equations for the calculation of thermal effects on humans. Process Saf Environ Prot 88(2):109–113

    Article  Google Scholar 

  43. Prabhakar N, Lahiri B, Sangeetha C (2008) Damage assessment software program. Defence Science Journal 58(6):745–751. https://doi.org/10.14429/dsj.58.1702

    Article  Google Scholar 

  44. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Integration of ordinary differential equations. In: Press WH (ed) Numerical recipes in C ++, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  45. Proske D (2008) Catalogue of risks: natural, technical, social and health risks, 1st edn. Springer, Berlin Heidelbarg

    Book  Google Scholar 

  46. Radtke FKF, Stacke I, Voss M, Rizzuti C, Häring I (2010): Toolbox for 3D planning and risk assessment of ammunition field depots. In 34th DoD Explosive safety seminar. Portland, Oregon, United States

  47. Rogers R, Hermann K (2001) Einführung in die Risikoanalyse. In: Seminar qualitative und quantitative Risikoanalyse

  48. Salhab RG, Häring I, Radtke FKF (2011a) Formalization of a quantitative risk analysis methodology for static explosive events. In: Advances in safety, reliability and risk management: ESREL 2011

  49. Salhab RG, Häring I, Radtke FKF (2011b) Fragment launching conditions for risk analysis of explosion and impact scenarios. In: ESREL 2011 annual conference 2011. Troyes, France

  50. Ratick S, Schwarz G (2009) Monte Carlo simulation. In: Kitchin R, Thrift N (eds) International encyclopedia of human geography. Elsevier, Oxford

    Google Scholar 

  51. Senf H (1979) Endballistik von Splittern - THOR-Gleichungen. In BWB WM VI 2 Handbuch Munitionsbewertung. Bundesamt für Wehrtechnik und Beschaffung BWB

  52. SSCI (2014) Review on the terrorist attacks on U.S. facilities in Benghazi, Libya, September 11–12, 2012. U.S Senate Select Committee on Intelligence (SSCI). https://www.intelligence.senate.gov/sites/default/files/publications/113134.pdf. Accessed 30 Jan 2019

  53. STANAG 4355 (2009) The modified point mass and five degrees of freedom trajectory model. NATO, pp 95

  54. Statoil (2013) The In Amenas Attack, Report of the Investigation into the Terrorist Attack on In Amenas. Statoil, p 88. https://www.statoil.com/en/NewsAndMedia/News/2013/Downloads/In%20Amenas%20report.pdf. Accessed 28 Feb 2013

  55. Stillion J, Orletsky D-T (1999) Airbase vulnerability to conventional cruise-missile and ballistic-missile attacks. Technology, scenarios, and U.S. Air Force responses. Santa Monica, CA: RAND (MR/Rand Corporation, MR-1028-AF)

  56. Tolk A (2012) Engineering principles of combat modeling and distributed simulation, 1st edn. Wiley, London

    Book  Google Scholar 

  57. U.S. Army (1992) Conwep—conventional weapon effects. In Fundamentals of protective design for conventional weapons TM5-855-11992, U.S. Army. Engineer Waterways Experiment Station, Vicksburg

  58. U.S. Army (1993) Static testing of high-explosive munitions for obtaining fragment spatial distribution. International test operations procedure (ITOP), 1993, U.S Army combat system test activity. Aberdeen Proving Ground

  59. U.S. Department of Defense U.S. Military, and U.S. Army, 21st century U.S. Military manuals: nuclear, biological, and chemical (NBC) vulnerability analysis - FM 3-14 2011: progressive management

  60. van der Voort MM, van Doormaal JCAM, Verolme EK, Weerheijm J (2008) A universal throw model and its applications. Int J Impact Eng 35(2):109–118. https://doi.org/10.1016/j.ijimpeng.2007.01.004

    Article  Google Scholar 

  61. VITRUV (2019) Vulnerability identification tools for resilience enhancements of urban environments, VITRUV, EU project. https://cordis.europa.eu/project/rcn/98970/factsheet/de. Accessed 22 Aug 2019

  62. Vogelbacher G, Häring I, Fischer K, Riedel W (2016) Empirical susceptibility, vulnerability and risk analysis for resilience enhancement of urban areas to terrorist events. Eur J Secur Res 1(2):151–186. https://doi.org/10.1007/s41125-016-0009-x

    Article  Google Scholar 

  63. von Ramin M, Zdrazil M (2017) Physikalisches Gefährdungspotenzial bei Explosionsereignissen. 7. In: Hiermaier S, Gebbeken N, Klaus M, Stolz A (eds.), 7. Workshop Bau-Protect 2016, Gefährdung, dynamische Analyse und Schutzkonzepte für bauliche Strukturen, Freiburg, 15–16. November 2016. Stuttgart: Fraunhofer Verlag 2017, pp. 48–68, ISBN: 978-3-8396-1153-1.

  64. Voss M (2010) Risk Analysis for Forward Operating Bases RAFOB-RAM Abschlussbericht, in Report E 01/10, 2010, Fraunhofer Institut für Kurzzeitdynamik EMI: Efringen-Kirchen

  65. Voss M, Dörr A, Dirlewanger H (2008) Risk analysis for forward operation bases—rocket artillery mortar (RAFOB-RAM). Department of defense explosives safety board 33rd DDESB seminar 2008. Palm Springs, California, USA

  66. Voss M, Häring I, Dirlewanger H (2010) Risikoanalyse für die Bewertung und Verbesserung des passiven baulichen Schutzes von Feldlagern gegen Beschuss. In: Wehrwissenschaftliche Forschung Jahresbericht 2009. Verteidigungsforschung für die Erfordernisse der bundeswehr im Einsatz. Available online at https://docplayer.org/28286065-Wehrwissenschaftliche-forschung-jahresbericht-verteidigungsforschung-fuer-die-erfordernisse-der-bundeswehr-im-einsatz.html. Accessed 20 Feb 2019

  67. Voss M, Häring I, Fischer K, Riedel W, Siebold U (2012) Susceptibility and vulnerability of urban buildings and infrastructure against terroristic threats from qualitative and quantitative risk analyses. In: 11th international probabilistic safety assessment and management conference and the annual european safety and reliability conference 2012 (PSAM11, ESREL 2012), 25-29.06.2012, Ed.: IAPSAM & ESRA (International Association for Probabilistic Safety Assessment and Management and European Safety and Reliability Association). Helsinki, Finland. http://www.proceedings.com/16286.html. Accessed 22 Aug 2019

  68. Ward V (2018) What do we know about suicide bombing? Politics and the life sciences : the journal of the Association for Politics and the Life Sciences 37(1):88–112. https://doi.org/10.1017/pls.2017.31

    Article  Google Scholar 

  69. Watts DB (1999) An overview over the modular effectiveness/vulnerability assessment (MEVA) architecture, Air Force Research Lab Eglin AFB FL Munitions Directorate

  70. Wey P (2014) The six and seven degrees of freedom guided projectile trajectory model. NATO STANREC 4618

  71. Whitney CR (1991) I.R.A. Attacks 10 downing street with mortar fire as cabinet meets. In The New York Times, 1991. https://www.nytimes.com/1991/02/08/world/ira-attacks-10-downing-street-with-mortar-fire-as-cabinet-meets.html. Accessed 30 Jan 2019

Download references

Acknowledgements

This work is based in major parts on research funded by grants through the German Bundeswehr Center for Protective and Special Technologies, WTD 52, whose support is gratefully acknowledged. The authors acknowledge preceding substantial work in a similar but different application domain on the subject of the paper by A. Dörr, M. Voss and C. Rizzuti, who contributed to the approach and its implementation, as well as fruitful discussions with H. Dirlewanger, A. Heckersbruch and M. Steyerer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Häring.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Häring, I., Pfeiffer, M., Vogelbacher, G. et al. Risk and Resilience Analysis of Public Civil Buildings Against Shelling with Explosive Sources in Urban Contexts. Eur J Secur Res 5, 311–347 (2020). https://doi.org/10.1007/s41125-019-00046-9

Download citation

Keywords

  • Quantitative and probabilistic risk and resilience analysis
  • Terroristic shelling
  • Impact
  • Mortar
  • Rocket
  • Artillery
  • Passive protection
  • Retrofit
  • Asset protection
  • Physical security
  • Resilience management