Abstract
This contribution deals with big data as a resource for state regulation. The academic interest in the specificities of contemporary technology-based regulation has generated the concept of “algorithmic regulation” (Yeung, Regulat Govern 347(6):1–19, 2017), which yet needs to be refined empirically. This article sets out to analyze the use of passenger name records (PNR) for security governance as a form of algorithmic regulation. It scrutinizes the political debate about the establishment of the use of PNR for security governance in Germany. Along the three phases of the regulatory process (standard setting, monitoring and enforcement), the study sheds light on how Yeung’s taxonomy helps to critically analyze the choices that lead to a specific type of algorithmic regulation. The analysis also unveils the major controversies of the debate (for example about individual rights) and addresses aspects that were left out of the debate (such as the problem of unwanted discrimination through machine learning). The analysis shows how these issues shaped the specific model of PNR-based governance. The German case also raises awareness for the symbolic function of big data in regulation—a dimension that should be taken into account by the concept of algorithmic regulation. The final discussion points out that research about algorithmic regulation is challenged by systemic opacity, which poses conceptual and political problems. The articles ends with a reflection upon the power of the (seemingly unchallenged) promise of big data that lends itself as a resource for securitization strategies.
This is a preview of subscription content, access via your institution.
Notes
Boyd and Crawford define big data as a “cultural, technological, and scholarly phenomenon” made up of the interplay of algorithmic analysis of large datasets—in order to identify patterns and make economic, social, technical, and legal claims (Boyd and Crawford 2012).
Once collected, data can only be used for the purpose that was defined at the moment of consent.
Any collection of personal data has to be restricted to the data that is absolutely necessary for the relevant purpose.
No personal data can be collected and processed without the direct consent of the data subject.
These areas are, among others: cybernetics, critical data studies, critical algorithm studies, critical software studies, critical security studies, surveillance studies, privacy research, and policy research.
Data transmission will start immediately once the law comes into effect in April 2017 and proceeds in steps until May 2018. Any failure by airlines and travel agencies to transmit passenger data will be subject to a fine.
The author made many unsuccessful attempts to gather non-public information from the government and security agencies about the political process that led to the PNR bill and about details of the data collection, analysis and use. This opacity was justified with security reasons.
This list of “competent authorities” is required by the EU Directive in Art. 7.
The EU Directive includes a review that the EU Commission has to submit to the EU Parliament in 2020. The report should among other include a review of the necessity and proportionality of the collection and processing of PNR data for the purposes declared in the Directive. Whereas the report has to take into consideration the experiences made in the Member States, there is no specification concerning the methodology of the evaluation (EU 2016/681 Art. 19).
Other than in the German Federal anti-discrimination law, “gender” and “disabilities” are not mentioned as criteria that cannot be used for differential treatment.
Only SITA, a company that provides IT and telecommunication services to the air transport industry and has experience with building PNR systems, points out that the deletion of specific data is technically challenging and would delay the project (Knetsch 2017).
The bill lists 203 new posts in the Federal Criminal Police, 371 in the Federal Office of Administration, 27 at the Federal Information Technology Center, 23 at the Federal Police, and 4 at the Federal Commissioner for Data Protection and Freedom of Information (Deutscher Bundestag 2017a).
References
Ajana B (2015) Augmented borders: big data and the ethics of immigration control. J Inf Commun Ethics Soc 13(1):58–78. https://doi.org/10.1108/JICES-01-2014-0005
Amnesty International, Privacy International (2015) Two years after Snowden: protecting human rights in an age of mass surveillance. https://www.amnestyusa.org/wp-content/uploads/2017/04/ai-pi_two_years_on_from_snowden_final_final_clean.pdf. Accessed 19 July 2017
Amoore L (2011) Data derivatives. Theory Cult Soc 28(6):24–43. https://doi.org/10.1177/0263276411417430
Amoore L (2013) The politics of possibility: risk and security beyond probability. Duke University Press, Durham
Amoore L, Raley R (2016) Securing with algorithms: knowledge, decision, sovereignty. Secur Dialogue 48(1):3–10. https://doi.org/10.1177/0967010616680753
Ananny M, Crawford K (2017) Seeing without knowing: limitations of the transparency ideal and its application to algorithmic accountability. New Media Soc 33(4):1–17. https://doi.org/10.1177/1461444816676645
Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired. https://www.wired.com/2008/06/pb-theory. Accessed 1 Dec 2017
Aradau C, Blanke T (2016) Politics of prediction: security and the time/space of governmentality in the age of big data. Eur J Social Theory 20(3):373–391. https://doi.org/10.1177/1368431016667623
Balzacq T (2015) The ‘Essence’ of securitization: theory, ideal type, and a sociological science of security. Int Relat 29(1):103–113. https://doi.org/10.1177/0047117814526606b
Beaussier A-L, Demeritt D, Griffiths A, Rothstein H (2016) Accounting for failure: risk-based regulation and the problems of ensuring healthcare quality in the NHS. Health Risk Soc 18(3–4):205–224. https://doi.org/10.1080/13698575.2016.1192585
Berk R, Heidari H, Jabbari S, Kearns M, Roth A (2017) Fairness in criminal justice risk assessments: the state of the art. https://arxiv.org/abs/1703.09207 Accessed 1 Dec 2017
Black J (2002) Regulatory conversations. J Law Soc 29(1):163–196
Black J (2014) Learning from regulatory disasters. LSE 24:1–18. https://doi.org/10.2139/ssrn.2519934
Boellstorff T (2014) Die Konstruktion von Big Data in der Theorie. In: Reichert R (ed) Big data: analysen zum digitalen Wandel von Wissen, Macht und Ökonomie. Transcript, Bielefeld, pp 105–131
Boyd D, Crawford K (2012) Critical questions for big data. Inf Commun Soc 15(5):662–667. https://doi.org/10.1080/1369118x.2012.678878
Burrows R, Savage M (2014) After the crisis? Big Data and the methodological challenges of empirical sociology. Big Data Soc 1(1):1–6. https://doi.org/10.1177/2053951714540280
Caton S, Hall M, Weinhardt C (2015) How do politicians use Facebook? An applied social observatory. Big Data Soc 2:1–18. https://doi.org/10.1177/2053951715612822
Ceron A, Curini L, Iacus SM, Porro G (2014) Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media Soc 16(2):340–358. https://doi.org/10.1177/1461444813480466
Christin A, Rosenblat A, Boyd D (2015) Courts and predictive algorithms. Data & society. http://www.datacivilrights.org/pubs/2015-1027/Courts_and_Predictive_Algorithms.pdf. Accessed 13 Jan 2017
Diakopoulos N (2016) Accountability in algorithmic decision making. Commun. ACM (CACM) 59(2):56–62. https://doi.org/10.1145/2844110
Epstein C (2007) Guilty bodies, productive bodies, destructive bodies: crossing the biometric borders. Int Political Sociol 1(2):149–164. https://doi.org/10.1111/j.1749-5687.2007.00010.x
Espeland W, Stevens M (2008) A sociology of quantification. Eur J Sociol 49(3):401–436. https://doi.org/10.1017/S0003975609000150
Fischer F, Gottweis H (2012) Introduction. In: Fischer F, Gottweis H (eds) The argumentative turn revisited: public policy as communicative practice. Duke University Press, Durham, pp 1–27
Floridi L (2014) Artificial agents and their moral nature. In: Kroes P, Verbeek P-P (eds) The Moral status of technical artefacts. Springer, Dordrecht, pp 185–212
Gandy OH (1993) The panoptic sort: a political economy of personal information. Critical studies in communication and in the cultural industries. Westview Press, Boulder
Gillespie T (2014) The relevance of algorithms. In: Foot KA, Boczkowski PJ, Gillespie T (eds) Media technologies: essays on communication, materiality, and society. The MIT Press, Cambridge, pp 167–193
Golder SA, Macy MW (2011) Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051):1878–1881. https://doi.org/10.1126/science.1202775
Hajer MA (2002) Discourse analysis and the study of policy making. Eur Political Sci 1(1):61–65
Hajer MA, Wagenaar H (eds) (2004) Deliberative policy analysis: understanding governance in the network society. Theories of institutional design. Cambridge University Press, Cambridge
Hajer MA (2005) Setting the stage: a dramaturgy of policy deliberation. Admin Soc 36(6):624–647. https://doi.org/10.1177/0095399704270586
Hajer MA (2006) Doing discourse analysis: coalitions, practices, meaning. In: Brink M van den, Metze T (eds) Words matter in policy and planning: discourse theory and method in the social sciences. Netherlands Geographical Studies 344, Utrecht, KNAG Nethur, pp 65–74
Halavais A (2015) Bigger sociological imaginations: framing big social data theory and methods. Inf Commun Soc 18(5):583–594. https://doi.org/10.1080/1369118X.2015.1008543
Hardt M (2014) How big data is unfair. https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de#.l3ia947tq. Accessed 13 Jan 2017
Hert P de, Bellanova R (2011) Transatlantic cooperation on travelers’ data processing: from sorting countries to sorting individuals. Migration Policy Institute Report. https://www.migrationpolicy.org/research/transatlantic-cooperation-travelers-data-processing. Accessed 01 Dec 2017
Johns F (2017) Data mining as global governance: UNSW Law Research Paper No. 2015-61. In: Brownsword R, Scotford E, Yeung K (eds) The Oxford handbook of law, regulation and technology. Oxford University Press, Corby, pp 1–41
Just N, Latzer M (2016) Governance by algorithms: reality construction by algorithmic selection on the Internet. Media Cult Soc 39(2):238–258. https://doi.org/10.1177/0163443716643157
Kapiszewski D, Kirilova D (2014) Transparency in qualitative security studies research: standards, benefits, and challenges. Secur Stud 23(4):699–707. https://doi.org/10.1080/09636412.2014.970408
Kitchin R (2013) Big data and human geography: opportunities, challenges and risks. Dialogues Human Geogr 3(3):262–267. https://doi.org/10.1177/2043820613513388
Kitchin R (2016) Thinking critically about and researching algorithms. Inf Commun Soc 20(1):14–29. https://doi.org/10.1080/1369118X.2016.1154087
Korff D, George M (2015) Passenger Name Records, data mining & data protection: the need for strong safeguards. Directorate General Human Rights and Rule of Law. http://docplayer.net/16673463-Passenger-name-records-data-mining-data-protection.html. Accessed 17 Jan 2017
La Clé des langues (2017) The State and Surveillance: fear and Control: conversation between Didier Bigo and Mireille Delmas-Marty. http://cle.ens-lyon.fr/anglais/the-state-and-surveillance-fear-and-control-131675.kjsp? Accessed 1 Dec 2017
Leese M (2014) The new profiling: algorithms, black boxes, and the failure of anti-discriminatory safeguards in the European Union. Secur Dialogue 45(5):494–511. https://doi.org/10.1177/0967010614544204
Lyon D (2006) Airport screening, surveillance, and social sorting: Canadian responses to 9/11 in context. Can J Criminol Crim Justice 48(3):397–411. https://doi.org/10.1353/ccj.2006.0030
Medina E (2015) Rethinking algorithmic regulation. Kybernetes 44(6/7):1005–1019. https://doi.org/10.1108/K-02-2015-0052
Monahan T, Fisher JA (2014) Strategies for obtaining access to secretive or guarded organizations. J Contemp Ethnogr 44(6):1–28. https://doi.org/10.1177/0891241614549834
Morozov E (2014) The rise of data and the death of politics. The Guardian. https://www.theguardian.com/technology/2014/jul/20/rise-of-data-death-of-politics-evgeny-morozov-algorithmic-regulation. Accessed 1 Dec 2017
Neff G, Tanweer A, Fiore-Gartland B, Osburn L (2017) Critique and contribute: a practice-based framework for improving critical data studies and data science. Big Data 5(2):85–97. https://doi.org/10.1089/big.2016.0050
O’Reilly T (2013) Open data and algorithmic regulation. In: Goldstein B, Dyson L (eds) Beyond transparency: open data and the future of civic innovation. Code for America Press, San Francisco, pp 289–300
Pasquale F (2015) The Black Box society: the secret algorithms that control money and information. Harvard University Press, Cambridge
Ratcliffe J (2011) Intelligence-led policing. Routledge, London
Roßnagel A (2013) Big data—small privacy? Konzeptionelle Herausforderungen für das Datenschutzrecht. Zeitschrift für Datenschutz 3(11):562–567
Ruppert E (2012) Seeing population: census and surveillance by numbers. In: Ball K, Haggerty K, Lyon D (eds) Routledge international handbook of surveillance studies. Routledge, London, pp 209–216
Sales NA (2015) Big Data at the border: balancing visa-free travel and security in a digital age. Syracuse University College of Law. https://ecpr.eu/Events/PaperDetails.aspx?PaperID=26167&EventID=94. Accessed 12 Dec 2016
Sandvig C, Hamilton K, Karahalios K, Langbort C (2016) When the algorithm itself is a racist: diagnosing ethical harm in the basic components of software. Int J Commun 10(19):4972–4990
Schintler LA, Kulkarni R (2014) Big data for policy analysis: the good, the bad, and the ugly. Rev Policy Res 31(4):343–348. https://doi.org/10.1111/ropr.12079
Schmidt VA (2008) discursive institutionalism: the explanatory power of ideas and discourse. Annu Rev Polit Sci 11(1):303–326. https://doi.org/10.1146/annurev.polisci.11.060606.135342
Taylor L, Schroeder R (2015) Is bigger better? The emergence of big data as a tool for international development policy. GeoJournal 80(4):503–518. https://doi.org/10.1007/s10708-014-9603-5
Venturini T, Jacomy M, Meunier A, Latour B (2017) An unexpected journey: a few lessons from sciences Po médialab’s experience. Big Data Soc 4(2):1–11. https://doi.org/10.1177/2053951717720949
Vermeulen M, Bellanova R (2012) European ‘smart’ surveillance: what’s at stake for data protection, privacy and non-discrimination? Secur Human Rights 23(4):297–311
White P, Breckenridge RS (2014) Trade-offs, limitations, and promises of big data in social science research. Rev Policy Res 31(4):331–338. https://doi.org/10.1111/ropr.12078
Yeung K (2016) ‘Hypernudge’: big data as a mode of regulation by design. Inf Commun Soc 20(1):118–136. https://doi.org/10.1080/1369118X.2016.1186713
Yeung K (2017) Algorithmic regulation: a critical interrogation. Regulat Govern 347(6):1–19. https://doi.org/10.1111/rego.12158
Zuboff S (2015) Big other: surveillance capitalism and the prospects of an information civilization. J Inf Technol 30:75–89. https://doi.org/10.1057/jit.2015.5
Primary Sources
Arzt C (2017) Stellungnahme zur Anhörung des Innenausschusses des Deutschen Bundestages zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU)
Deutscher Bundestag (2017a) Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681: (Fluggastdatengesetz – FlugDaG)
Deutscher Bundestag (2017b) Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz – FlugDaG)
Deutscher Bundestag (2017c) Plenarprotokoll 225. Sitzung: 1. Lesung zu PNR-Gesetz
Deutscher Bundestag (2017d) Plenarprotokoll 231. Sitzung: 2. Lesung zu PNR-Gesetz
Bundestag Deutscher (2017) Wortprotokoll der der 114. Sitzung des Innenausschusses, Öffentliche Anhörung zu PNR-Gesetz
Die Bundesregierung (2017) Konsequenzen nach Anschlag in Berlin. https://www.bundesregierung.de/Content/DE/Artikel/2017/01/2017-01-10-de-maiziere-maas-sicherheitspolitik-nach-berlinanschlag.html. Accessed 17 July 2017
European Court of Justice (2017) Opinion 1/15 of the court (Grand Chamber). ECLI:EU:C:2017:592
European Parliament (2016) EU Passenger Name Record (PNR) directive: an overview. http://www.europarl.europa.eu/news/en/news-room/20150123BKG12902/eu-passenger-name-record-(pnr)-directive-an-overview. Accessed 12. Dec 2016
Knetsch M (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtline (EU) 2016/681 {Fluggastdatengesetz - FlugDaG)
Münch H (2017) Anhörung des Präsidenten des Bundeskriminalamtes Holger Münch vor dem Innenausschuss des Bundestages am 24. April 2017 zum Entwurf eines Fluggastdatengesetzes (FlugDaG): Stellungnahme
Sander A (2017) Stellungnahme des Digitale Gesellschaft e. V. zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681
Voßhoff A (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz-FlugDaG)
Wildfang A (2017) Stellungnahme des Deutschen Richterbundes zum Referentenentwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz—FlugDaG)
Wollenschläger F (2017) Stellungnahme zum Entwurf eines Gesetzes über die Verarbeitung von Fluggastdaten zur Umsetzung der Richtlinie (EU) 2016/681 (Fluggastdatengesetz—FlugDaG) (BT-Drs. 18/11501)
Acknowledgements
My thanks go to Eva Korte and Björn Mohr for their valuable research assistance and to two anonymous reviewers for their excellent comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ulbricht, L. When Big Data Meet Securitization. Algorithmic Regulation with Passenger Name Records. Eur J Secur Res 3, 139–161 (2018). https://doi.org/10.1007/s41125-018-0030-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41125-018-0030-3
Keywords
- Algorithmic regulation
- Preemptive security
- Passenger name records
- Data analysis
- Big data
- Mobility